Harmonic Modeling of Voltage Source Converters using Basic Numerical Methods

Harmonic Modeling of Voltage Source Converters using Basic Numerical Methods

Subroto, Ramadhani Kurniawan; Lin, Bing Hao; Andrean, Victor; Lian, Ryan Kuo-Lung

John Wiley & Sons Inc

12/2021

416

Dura

Inglês

9781119527138

15 a 20 dias

938

Descrição não disponível.
Preface xiii

Acknowledgments xvii

List of Symbols xix

1 Fundamental Theory 1

1.1 Background 1

1.2 Definition of Harmonics 2

1.3 Fourier Series 2

1.3.1 Trigonometric Form 3

1.3.2 Phasor Form 4

1.3.3 Exponential Form 4

1.4 Waveform Symmetry 5

1.4.1 Even Symmetry 5

1.4.2 Odd Symmetry 6

1.4.3 Half-Wave Symmetry 6

1.5 Phase Sequence of Harmonics 8

1.6 Frequency Domain and Harmonic Domain 8

1.7 Power Definitions 9

1.7.1 Average Power 9

1.7.2 Apparent and Reactive Power 9

1.8 Harmonic Indices 11

1.8.1 Total Harmonic Distortion (THD) 11

1.8.2 Total Demand Distortion (TDD) 12

1.8.3 True Power Factor 12

1.9 Detrimental Effects of Harmonics 13

1.9.1 Resonance 13

1.9.2 Misoperations of Meters and Relays 17

1.9.3 Harmonics Impact on Motors 18

1.9.4 Harmonics Impact on Transformers 18

1.10 Characteristic Harmonic and Non-Characteristic Harmonic 19

1.11 Harmonic Current Injection Method 21

1.12 Steady-State vs. Transient Response 21

1.13 Steady-State Modeling 22

1.14 Large-Signal Modeling vs. Small-Signal Modeling 24

1.15 Discussion of IEEE Standard (STD) 519 25

1.16 Supraharmonics 30

2 Power Electronics Basics 37

2.1 Some Basics 37

2.2 Semiconductors vs. Wide Bandgap Semiconductors 38

2.3 Types of Static Switches 40

2.3.1 Uncontrolled Static Switch 40

2.3.2 Semi-Controllable Switches 41

2.3.3 Controlled Switch 42

2.4 Combination of Switches 44

2.5 Classification Based on Commutation Process 45

2.6 Voltage Source Converter vs. Current Source Converter 46

3 Basic Numerical Iterative Methods 49

3.1 Definition of Error 49

3.2 The Gauss-Seidel Method 50

3.3 Predictor-Corrector 52

3.4 Newton's Method 55

3.4.1 Root Finding 55

3.4.2 Numerical Integration 56

3.4.3 Power Flow 57

3.4.4 Harmonic Power Flow 61

3.4.5 Shooting Method 63

3.4.6 Advantages of Newton's Method 67

3.4.7 Quasi-Newton Method 69

3.4.8 Limitation of Newton's Method 71

3.5 PSO 71

4 Matrix Exponential 73

4.1 Definition of Matrix Exponential 74

4.2 Evaluation of Matrix Exponential 75

4.2.1 Inverse Laplace Transform 75

4.2.2 Cayley-Hamilton Method 76

4.2.3 Pade Approximation 78

4.2.4 Scaling and Squaring 80

4.3 Krylov Subspace Method 80

4.4 Krylov Space Method with Restarting 83

4.5 Application of Augmented Matrix on DC-DC Converters 86

4.6 Runge-Kutta Methods 90

5 Modeling of Voltage Source Converters 95

5.1 Single-Phase Two-Level VSCs 95

5.1.1 Switching Functions 95

5.1.2 Switched Circuits 97

5.2 Three-Phase Two-Level VSCs 99

5.3 Three-Phase Multilevel Voltage Source Converter 112

5.3.1 Multilevel PWM 112

5.3.2 Diode Clamped Multilevel VSCs 114

5.3.3 Flying Capacitor Multilevel VSCs 120

5.3.4 Cascaded Multi-Level VSCs 128

5.3.5 Modular Multi-Level VSC 140

6 Frequency Coupling Matrices 149

6.1 Construction of FCM in the Harmonic Domain 149

6.2 Construction of FCM in the Time Domain 155

7 General Control Approaches of a VSC 179

7.1 Reference Frame 179

7.1.1 Stationary-abc Frame 179

7.1.2 Stationary-???? Frame 180

7.1.3 Synchronous-dq Frame 181

7.1.4 Phase-Locked Loop 182

7.2 Control Strategies 183

7.2.1 Vector-Current Controller 183

7.2.2 Direct Power Controller 186

7.2.3 DC-bus Voltage Controller 188

7.2.4 Circulating Current Controller 189

8 Generalized Steady-State Solution Procedure for Closed-Loop Converter Systems 193

8.1 Introduction 193

8.2 Generalized Procedure 193

8.2.1 Step 1: Determine How and Where to Break the Loop 195

8.2.2 Step 2: Check if the Calculation Flows of the Broken System are Feasible 195

8.2.3 Step 3: Determine What Domain of Each Component in the System Should be Modeled 196

8.2.4 Step 4: Formulate the Mismatch Equations 197

8.2.5 Step 5: Iterate to Find the Solution 197

8.3 Previously Proposed Methods Derived from the Proposed Solution Procedures 197

8.3.1 Steady-State Methods Derived from Loop-Breaking 1 Method 197

8.3.2 Steady-State Methods Derived from Loop-Breaking 2 Method 198

8.4 The Loop-Breaking 3 Method 200

9 Loop-Breaking 1 Method 205

9.1 A Typical Two-Level VSC with AC Current Control and DC Voltage Control 205

9.2 Loop-Breaking 1 Method for a Two-Level VSC 206

9.2.1 Block 1 208

9.2.2 Current Controller Block 208

9.2.3 Voltage Controller Block 210

9.3 Solution Flow Diagram 210

9.3.1 Initialization 212

9.3.2 Jacobian Matrix 212

9.3.3 Number of Modulating Voltage Harmonics to be Included 228

10 Loop-Breaking 2 Method for Solving a VSC 245

10.1 Modeling for a Closed-Loop DC-DC Converter 245

10.1.1 Model of the Buck Converter 245

10.1.2 Constraints of Steady-State 247

10.1.3 Switching Time Constraints 248

10.1.4 Solution Flow Diagram 248

10.2 Two-Level VSC Modeling: Open-Loop Equations 252

10.2.1 Steady-State Constraints 256

10.2.2 Switching Time Constraints 257

10.2.3 Solution Flow Diagram 260

10.2.4 Initialization 260

10.2.5 Jacobian Matrix 260

10.2.6 Discussions of Results 269

10.3 Comparison Between the LB 1 and LB 2 Methods 270

10.3.1 Case #1: Balanced System 270

10.3.2 Case #2: Unbalanced System with AC Waveform Exhibiting Half-Wave Symmetry 270

10.3.3 Case #3: Unbalanced System, No Waveform Symmetry 272

10.4 Large-Signal Modeling for Line-Commutated Power Converter 272

10.4.1 Discontinuous Conduction Mode 273

10.4.2 Continuous Conduction Mode 282

10.4.3 Steady-State Constraint Equations 284

10.4.4 General Comments 291

11 Loop-Breaking 3 Method 293

11.1 OpenDSS 293

11.2 Interfacing OpenDSS with MATLAB 294

11.3 Interfacing OpenDSS with Harmonic Models of VSCs 299

12 Small-Signal Harmonic Model of a VSC 315

12.1 Problem Statement 315

12.2 Gauss-Seidel LB 3 and Newton LB 3 316

12.2.1 Current Injection Method 316

12.2.2 Norton Circuit Method 317

12.3 Small-Signal Analysis of DC-DC Converter 320

12.4 Small-Signal Analysis of a Two-Level VSC 325

12.4.1 Approach from Section 12.3 325

12.4.2 Simpler Approach 326

13 Parameter Estimation for a Single VSC 335

13.1 Background on Parameter Estimation 335

13.2 Parameter Estimator Based on White-Box-and-Black-Box Models 337

13.3 Estimation Validations 339

13.3.1 Experimental Validation 340

13.3.2 PSCAD/EMTDC Validation 343

14 Parameter Estimation for Multiple VSCs with Domain Adaptation 349

14.1 Introduction of Deep Learning 349

14.2 Domain Adaptation 351

14.3 Parameter Estimation for Multiple VSCs 352

14.4 Notations for DA 353

14.5 Supervised Domain Adaptation for Regression 355

14.6 Supervised Domain Adaptation for Classification 356

14.7 Test Setup 358

14.7.1 Data Generator 359

14.7.2 Data Preprocessing 359

14.8 Performance Metrics 361

14.8.1 R square (Regression) 361

14.8.2 Mean Absolute Percentage Error, MAPE (Regression) 361

14.8.3 Accuracy (Classification) 362

14.8.4 F1 score (Classification) 362

14.9 Test Results 363

14.9.1 Classification Task on Multiple VSC 363

14.9.2 Regression Task on Multiple VSC 363

14.10 Software for Running the Codes 370

14.11 Implementation of Domain Adaptation 370

14.11.1 Data Generation 370

14.11.2 Regression 372

14.11.3 Classification network 375

References 379

Index 389
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
harmonic modelling power converter; harmonic modelling time domain methods; time varying power system; large-signal modeling power converter; large-signal signal harmonic power flow; small-signal modeling power converter; derived time-domain model