Transcritical CO2 Heat Pump
-15%
portes grátis
Transcritical CO2 Heat Pump
Fundamentals and Applications
Zhang, Xin-rong; Yamaguchi, Hiroshi
John Wiley & Sons Inc
03/2021
320
Dura
Inglês
9781118380048
15 a 20 dias
718
Descrição não disponível.
List of Contributors
Preface
Chapter 1 Introduction
1.1 Background
1.2 Fundamentals
1.3 Applications
1.4 A guide to this book
Chapter 2 Current development of CO2 heat pump
2.1 Introduction
2.2 CO2 properties
2.3 Working principle of transcritical CO2 heat pump
2.4 A brief history of CO2 heat pump
2.5 CO2 cascade heat pump system
2.6 Advanced CO2 heat pump system with an ejector
Chapter 3 Fluid Dynamics and Heat Transfer of Supercritical Carbon Dioxide Cooling
3.1 Supercritical properties
3.2 Supercritical heat transfer fluid mechanics
3.3 Supercritical gas cooling experiments
3.4 Supercritical CO2 heat transfer correlations
3.5 Supercritical CO2 pressure drop
3.6 Supercritical CO2 heat transfer and pressure drop with lubricants
3.7 Summary and need for additional research
Chapter 4 Boiling flow and heat transfer of CO2 in an evaporator
4.1 Introduction
4.2 Boiling heat transfer of liquid CO2 in an evaporator
4.3 Sublimation heat ransfer of dry ice-gas CO2 in an evaporator/sublimator
Chapter 5 Theoretical analysis of CO2 expansion process
5.1 Introduction
5.2 Thermodynamic analysis of the expansion process in transcritical CO2 cycles
5.3 Theory of ejector-expansion devices
5.4 Expansion work recovery devices for transcritical CO2 systems
Chapter 6 Trans-critical carbon dioxide compressors
6.1 Introduction
6.2 Sliding vane CO2 compressor
6.3 Screw CO2 compressor
6.4 CO2 rolling rotor compressor
6.5 SCO2 scroll compressor
6.6 SCO2 turbo-compressor
6.7 SCO2 piston compressor
6.8 Future trends
6.9 Some key technical problems of CO2 compressor
6.10 Conclusion and perspectives
Chapter 7 CO2 subcooling
7.1 Introduction
7.2 CO2 thermodynamic properties and approach
7.3 Internal heat exchanger
7.4 Dedicated mechanical subcooling
7.5 Integrated mechanical subcooling
7.6 Summary
Chapter 8 High temperature CO2 heat pump system and optimization
8.1 Background
8.2 Basic system design
8.3 High temperature operation and key equipment
8.4 System Optimization
8.5 Applications and challenges
8.6 Commercialized Products by High Temperature CO2 Heat Pump
8.7 Summary
Chapter 9 Performance Analysis and Optimization of a CO2 Heat Pump Water Heating System
9.1 Introduction
9.2 System configuration
9.3 System modeling
9.4 Numerical solution
9.5 Conditions for performance analysis and optimization
9.6 Performance analysis under periodically steady state
9.7 Performance enhancement by extracting tepid water
9.8 Performance analysis under unsteady state
9.9 Performance estimation under unsteady state
9.10 Performance optimization under unsteady state
9.11 Other issues on performance analysis and optimization
Chapter 10 Transcritical CO2 heat pump space heating
10.1 Attempts towards the space heating used a transcritical CO2 heat pump
10.2 Thermodynamic analysis of the subcooler based CO2 heat pump
10.3 Comparison between the subcooler based CO2 system and the cascade cycle
10.4 Optimal discharge pressure
10.5 Optimal medium temperature
10.6 Conclusion and prospect
References
Preface
Chapter 1 Introduction
1.1 Background
1.2 Fundamentals
1.3 Applications
1.4 A guide to this book
Chapter 2 Current development of CO2 heat pump
2.1 Introduction
2.2 CO2 properties
2.3 Working principle of transcritical CO2 heat pump
2.4 A brief history of CO2 heat pump
2.5 CO2 cascade heat pump system
2.6 Advanced CO2 heat pump system with an ejector
Chapter 3 Fluid Dynamics and Heat Transfer of Supercritical Carbon Dioxide Cooling
3.1 Supercritical properties
3.2 Supercritical heat transfer fluid mechanics
3.3 Supercritical gas cooling experiments
3.4 Supercritical CO2 heat transfer correlations
3.5 Supercritical CO2 pressure drop
3.6 Supercritical CO2 heat transfer and pressure drop with lubricants
3.7 Summary and need for additional research
Chapter 4 Boiling flow and heat transfer of CO2 in an evaporator
4.1 Introduction
4.2 Boiling heat transfer of liquid CO2 in an evaporator
4.3 Sublimation heat ransfer of dry ice-gas CO2 in an evaporator/sublimator
Chapter 5 Theoretical analysis of CO2 expansion process
5.1 Introduction
5.2 Thermodynamic analysis of the expansion process in transcritical CO2 cycles
5.3 Theory of ejector-expansion devices
5.4 Expansion work recovery devices for transcritical CO2 systems
Chapter 6 Trans-critical carbon dioxide compressors
6.1 Introduction
6.2 Sliding vane CO2 compressor
6.3 Screw CO2 compressor
6.4 CO2 rolling rotor compressor
6.5 SCO2 scroll compressor
6.6 SCO2 turbo-compressor
6.7 SCO2 piston compressor
6.8 Future trends
6.9 Some key technical problems of CO2 compressor
6.10 Conclusion and perspectives
Chapter 7 CO2 subcooling
7.1 Introduction
7.2 CO2 thermodynamic properties and approach
7.3 Internal heat exchanger
7.4 Dedicated mechanical subcooling
7.5 Integrated mechanical subcooling
7.6 Summary
Chapter 8 High temperature CO2 heat pump system and optimization
8.1 Background
8.2 Basic system design
8.3 High temperature operation and key equipment
8.4 System Optimization
8.5 Applications and challenges
8.6 Commercialized Products by High Temperature CO2 Heat Pump
8.7 Summary
Chapter 9 Performance Analysis and Optimization of a CO2 Heat Pump Water Heating System
9.1 Introduction
9.2 System configuration
9.3 System modeling
9.4 Numerical solution
9.5 Conditions for performance analysis and optimization
9.6 Performance analysis under periodically steady state
9.7 Performance enhancement by extracting tepid water
9.8 Performance analysis under unsteady state
9.9 Performance estimation under unsteady state
9.10 Performance optimization under unsteady state
9.11 Other issues on performance analysis and optimization
Chapter 10 Transcritical CO2 heat pump space heating
10.1 Attempts towards the space heating used a transcritical CO2 heat pump
10.2 Thermodynamic analysis of the subcooler based CO2 heat pump
10.3 Comparison between the subcooler based CO2 system and the cascade cycle
10.4 Optimal discharge pressure
10.5 Optimal medium temperature
10.6 Conclusion and prospect
References
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
CO2, non-flammable natural fluid, Ozone Depletion Potential (ODP), Global Warming Potential (GWP), greenhouse effect, refrigerant, CO2 capture and storage, CO2 thermodynamic and transport properties, heat transfer, pressure drop, new energy systems, CO2 trans-critical compression refrigeration thermodynamics cycle, air conditioners, heat pumps, CO2 refrigeration, water heaters, air-conditioning systems, residential and commercial heating systems, cooling systems
List of Contributors
Preface
Chapter 1 Introduction
1.1 Background
1.2 Fundamentals
1.3 Applications
1.4 A guide to this book
Chapter 2 Current development of CO2 heat pump
2.1 Introduction
2.2 CO2 properties
2.3 Working principle of transcritical CO2 heat pump
2.4 A brief history of CO2 heat pump
2.5 CO2 cascade heat pump system
2.6 Advanced CO2 heat pump system with an ejector
Chapter 3 Fluid Dynamics and Heat Transfer of Supercritical Carbon Dioxide Cooling
3.1 Supercritical properties
3.2 Supercritical heat transfer fluid mechanics
3.3 Supercritical gas cooling experiments
3.4 Supercritical CO2 heat transfer correlations
3.5 Supercritical CO2 pressure drop
3.6 Supercritical CO2 heat transfer and pressure drop with lubricants
3.7 Summary and need for additional research
Chapter 4 Boiling flow and heat transfer of CO2 in an evaporator
4.1 Introduction
4.2 Boiling heat transfer of liquid CO2 in an evaporator
4.3 Sublimation heat ransfer of dry ice-gas CO2 in an evaporator/sublimator
Chapter 5 Theoretical analysis of CO2 expansion process
5.1 Introduction
5.2 Thermodynamic analysis of the expansion process in transcritical CO2 cycles
5.3 Theory of ejector-expansion devices
5.4 Expansion work recovery devices for transcritical CO2 systems
Chapter 6 Trans-critical carbon dioxide compressors
6.1 Introduction
6.2 Sliding vane CO2 compressor
6.3 Screw CO2 compressor
6.4 CO2 rolling rotor compressor
6.5 SCO2 scroll compressor
6.6 SCO2 turbo-compressor
6.7 SCO2 piston compressor
6.8 Future trends
6.9 Some key technical problems of CO2 compressor
6.10 Conclusion and perspectives
Chapter 7 CO2 subcooling
7.1 Introduction
7.2 CO2 thermodynamic properties and approach
7.3 Internal heat exchanger
7.4 Dedicated mechanical subcooling
7.5 Integrated mechanical subcooling
7.6 Summary
Chapter 8 High temperature CO2 heat pump system and optimization
8.1 Background
8.2 Basic system design
8.3 High temperature operation and key equipment
8.4 System Optimization
8.5 Applications and challenges
8.6 Commercialized Products by High Temperature CO2 Heat Pump
8.7 Summary
Chapter 9 Performance Analysis and Optimization of a CO2 Heat Pump Water Heating System
9.1 Introduction
9.2 System configuration
9.3 System modeling
9.4 Numerical solution
9.5 Conditions for performance analysis and optimization
9.6 Performance analysis under periodically steady state
9.7 Performance enhancement by extracting tepid water
9.8 Performance analysis under unsteady state
9.9 Performance estimation under unsteady state
9.10 Performance optimization under unsteady state
9.11 Other issues on performance analysis and optimization
Chapter 10 Transcritical CO2 heat pump space heating
10.1 Attempts towards the space heating used a transcritical CO2 heat pump
10.2 Thermodynamic analysis of the subcooler based CO2 heat pump
10.3 Comparison between the subcooler based CO2 system and the cascade cycle
10.4 Optimal discharge pressure
10.5 Optimal medium temperature
10.6 Conclusion and prospect
References
Preface
Chapter 1 Introduction
1.1 Background
1.2 Fundamentals
1.3 Applications
1.4 A guide to this book
Chapter 2 Current development of CO2 heat pump
2.1 Introduction
2.2 CO2 properties
2.3 Working principle of transcritical CO2 heat pump
2.4 A brief history of CO2 heat pump
2.5 CO2 cascade heat pump system
2.6 Advanced CO2 heat pump system with an ejector
Chapter 3 Fluid Dynamics and Heat Transfer of Supercritical Carbon Dioxide Cooling
3.1 Supercritical properties
3.2 Supercritical heat transfer fluid mechanics
3.3 Supercritical gas cooling experiments
3.4 Supercritical CO2 heat transfer correlations
3.5 Supercritical CO2 pressure drop
3.6 Supercritical CO2 heat transfer and pressure drop with lubricants
3.7 Summary and need for additional research
Chapter 4 Boiling flow and heat transfer of CO2 in an evaporator
4.1 Introduction
4.2 Boiling heat transfer of liquid CO2 in an evaporator
4.3 Sublimation heat ransfer of dry ice-gas CO2 in an evaporator/sublimator
Chapter 5 Theoretical analysis of CO2 expansion process
5.1 Introduction
5.2 Thermodynamic analysis of the expansion process in transcritical CO2 cycles
5.3 Theory of ejector-expansion devices
5.4 Expansion work recovery devices for transcritical CO2 systems
Chapter 6 Trans-critical carbon dioxide compressors
6.1 Introduction
6.2 Sliding vane CO2 compressor
6.3 Screw CO2 compressor
6.4 CO2 rolling rotor compressor
6.5 SCO2 scroll compressor
6.6 SCO2 turbo-compressor
6.7 SCO2 piston compressor
6.8 Future trends
6.9 Some key technical problems of CO2 compressor
6.10 Conclusion and perspectives
Chapter 7 CO2 subcooling
7.1 Introduction
7.2 CO2 thermodynamic properties and approach
7.3 Internal heat exchanger
7.4 Dedicated mechanical subcooling
7.5 Integrated mechanical subcooling
7.6 Summary
Chapter 8 High temperature CO2 heat pump system and optimization
8.1 Background
8.2 Basic system design
8.3 High temperature operation and key equipment
8.4 System Optimization
8.5 Applications and challenges
8.6 Commercialized Products by High Temperature CO2 Heat Pump
8.7 Summary
Chapter 9 Performance Analysis and Optimization of a CO2 Heat Pump Water Heating System
9.1 Introduction
9.2 System configuration
9.3 System modeling
9.4 Numerical solution
9.5 Conditions for performance analysis and optimization
9.6 Performance analysis under periodically steady state
9.7 Performance enhancement by extracting tepid water
9.8 Performance analysis under unsteady state
9.9 Performance estimation under unsteady state
9.10 Performance optimization under unsteady state
9.11 Other issues on performance analysis and optimization
Chapter 10 Transcritical CO2 heat pump space heating
10.1 Attempts towards the space heating used a transcritical CO2 heat pump
10.2 Thermodynamic analysis of the subcooler based CO2 heat pump
10.3 Comparison between the subcooler based CO2 system and the cascade cycle
10.4 Optimal discharge pressure
10.5 Optimal medium temperature
10.6 Conclusion and prospect
References
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
CO2, non-flammable natural fluid, Ozone Depletion Potential (ODP), Global Warming Potential (GWP), greenhouse effect, refrigerant, CO2 capture and storage, CO2 thermodynamic and transport properties, heat transfer, pressure drop, new energy systems, CO2 trans-critical compression refrigeration thermodynamics cycle, air conditioners, heat pumps, CO2 refrigeration, water heaters, air-conditioning systems, residential and commercial heating systems, cooling systems