Properties for Design of Composite Structures
-15%
portes grátis
Properties for Design of Composite Structures
Theory and Implementation Using Software
McCartney, Neil
John Wiley & Sons Inc
07/2022
592
Dura
Inglês
9781118485286
15 a 20 dias
1282
Descrição não disponível.
Preface vii
About the Companion Website ix
1 Introduction 1
2 Fundamental Relations for Continuum Models 5
3 Maxwell's Far-field Methodology Applied to the Prediction of Effective Properties of Multiphase Isotropic Particulate Composites 43
4 Maxwell's Methodology for the Prediction of Effective Properties of Unidirectional Multiphase Fibre-reinforced Composites 65
5 Reinforcement with Ellipsoidal Inclusions 97
6 Properties of an Undamaged Single Lamina 111
7 Effective Thermoelastic Properties of Undamaged Laminates 129
8 Energy Balance Approach to Fracture in Anisotropic Elastic Material 163
9 Ply Crack Formation in Symmetric Cross-ply Laminates 189
10 Theoretical Basis for a Model of Ply Cracking in General Symmetric Laminates 223
11 Ply Cracking in Cross-ply Laminates Subject to Biaxial Bending 249
12 Energy-based Delamination Theory for Biaxial Loading in the Presence of Thermal Stresses 271
13 Energy Methods for Fatigue Damage Modelling of Laminates 297
14 Model of Composite Degradation Due to Environmental Damage 329
15 Maxwell's Far-field Methodology Predicting Elastic Properties of Multiphase Composites Reinforced with Aligned Transversely Isotropic Spheroids 345
16 Debonding Models and Application to Fibre Fractures and Matrix Cracks 379
17 Interacting Bridged Ply Cracks in a Cross-ply Laminate 425
18 Theoretical Basis for a Model of Ply Cracking in General Symmetric Laminates 447
19 Stress-transfer Mechanics for Biaxial Bending 479
Appendix A: Solution for Shear of Isolated Spherical Particle in an Infinite Matrix 503
Appendix B: Elasticity Analysis of Two Concentric Cylinders 510
Appendix C: Gibbs Energy per Unit Volume for a Cracked Laminate 518
Appendix D: Crack Closure Conditions for Laminates 523
Appendix E: Derivation of the Solution of Nonlinear Equations 531
Appendix F: Analysis for Transversely Isotropic Cylindrical Inclusions 536
Appendix G: Recurrence Relations, Differential Equations and Boundary Conditions 541
Appendix H: Solution of Differential Equations 546
Appendix I: Energy Balance Equation for Delamination Growth 551
Appendix J: Derivation of Energy-based Fracture Criterion for Bridged Cracks 554
Appendix K: Numerical Solution of Integral Equations for Bridged Cracks 560
Index 565
About the Companion Website ix
1 Introduction 1
2 Fundamental Relations for Continuum Models 5
3 Maxwell's Far-field Methodology Applied to the Prediction of Effective Properties of Multiphase Isotropic Particulate Composites 43
4 Maxwell's Methodology for the Prediction of Effective Properties of Unidirectional Multiphase Fibre-reinforced Composites 65
5 Reinforcement with Ellipsoidal Inclusions 97
6 Properties of an Undamaged Single Lamina 111
7 Effective Thermoelastic Properties of Undamaged Laminates 129
8 Energy Balance Approach to Fracture in Anisotropic Elastic Material 163
9 Ply Crack Formation in Symmetric Cross-ply Laminates 189
10 Theoretical Basis for a Model of Ply Cracking in General Symmetric Laminates 223
11 Ply Cracking in Cross-ply Laminates Subject to Biaxial Bending 249
12 Energy-based Delamination Theory for Biaxial Loading in the Presence of Thermal Stresses 271
13 Energy Methods for Fatigue Damage Modelling of Laminates 297
14 Model of Composite Degradation Due to Environmental Damage 329
15 Maxwell's Far-field Methodology Predicting Elastic Properties of Multiphase Composites Reinforced with Aligned Transversely Isotropic Spheroids 345
16 Debonding Models and Application to Fibre Fractures and Matrix Cracks 379
17 Interacting Bridged Ply Cracks in a Cross-ply Laminate 425
18 Theoretical Basis for a Model of Ply Cracking in General Symmetric Laminates 447
19 Stress-transfer Mechanics for Biaxial Bending 479
Appendix A: Solution for Shear of Isolated Spherical Particle in an Infinite Matrix 503
Appendix B: Elasticity Analysis of Two Concentric Cylinders 510
Appendix C: Gibbs Energy per Unit Volume for a Cracked Laminate 518
Appendix D: Crack Closure Conditions for Laminates 523
Appendix E: Derivation of the Solution of Nonlinear Equations 531
Appendix F: Analysis for Transversely Isotropic Cylindrical Inclusions 536
Appendix G: Recurrence Relations, Differential Equations and Boundary Conditions 541
Appendix H: Solution of Differential Equations 546
Appendix I: Energy Balance Equation for Delamination Growth 551
Appendix J: Derivation of Energy-based Fracture Criterion for Bridged Cracks 554
Appendix K: Numerical Solution of Integral Equations for Bridged Cracks 560
Index 565
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Composite structure theory; composite structure implementation; thermo-elastic properties; undamaged laminates; damaged laminates; undamaged composites; damaged composites; fiber properties; homogenous materials; homogeneous applications
Preface vii
About the Companion Website ix
1 Introduction 1
2 Fundamental Relations for Continuum Models 5
3 Maxwell's Far-field Methodology Applied to the Prediction of Effective Properties of Multiphase Isotropic Particulate Composites 43
4 Maxwell's Methodology for the Prediction of Effective Properties of Unidirectional Multiphase Fibre-reinforced Composites 65
5 Reinforcement with Ellipsoidal Inclusions 97
6 Properties of an Undamaged Single Lamina 111
7 Effective Thermoelastic Properties of Undamaged Laminates 129
8 Energy Balance Approach to Fracture in Anisotropic Elastic Material 163
9 Ply Crack Formation in Symmetric Cross-ply Laminates 189
10 Theoretical Basis for a Model of Ply Cracking in General Symmetric Laminates 223
11 Ply Cracking in Cross-ply Laminates Subject to Biaxial Bending 249
12 Energy-based Delamination Theory for Biaxial Loading in the Presence of Thermal Stresses 271
13 Energy Methods for Fatigue Damage Modelling of Laminates 297
14 Model of Composite Degradation Due to Environmental Damage 329
15 Maxwell's Far-field Methodology Predicting Elastic Properties of Multiphase Composites Reinforced with Aligned Transversely Isotropic Spheroids 345
16 Debonding Models and Application to Fibre Fractures and Matrix Cracks 379
17 Interacting Bridged Ply Cracks in a Cross-ply Laminate 425
18 Theoretical Basis for a Model of Ply Cracking in General Symmetric Laminates 447
19 Stress-transfer Mechanics for Biaxial Bending 479
Appendix A: Solution for Shear of Isolated Spherical Particle in an Infinite Matrix 503
Appendix B: Elasticity Analysis of Two Concentric Cylinders 510
Appendix C: Gibbs Energy per Unit Volume for a Cracked Laminate 518
Appendix D: Crack Closure Conditions for Laminates 523
Appendix E: Derivation of the Solution of Nonlinear Equations 531
Appendix F: Analysis for Transversely Isotropic Cylindrical Inclusions 536
Appendix G: Recurrence Relations, Differential Equations and Boundary Conditions 541
Appendix H: Solution of Differential Equations 546
Appendix I: Energy Balance Equation for Delamination Growth 551
Appendix J: Derivation of Energy-based Fracture Criterion for Bridged Cracks 554
Appendix K: Numerical Solution of Integral Equations for Bridged Cracks 560
Index 565
About the Companion Website ix
1 Introduction 1
2 Fundamental Relations for Continuum Models 5
3 Maxwell's Far-field Methodology Applied to the Prediction of Effective Properties of Multiphase Isotropic Particulate Composites 43
4 Maxwell's Methodology for the Prediction of Effective Properties of Unidirectional Multiphase Fibre-reinforced Composites 65
5 Reinforcement with Ellipsoidal Inclusions 97
6 Properties of an Undamaged Single Lamina 111
7 Effective Thermoelastic Properties of Undamaged Laminates 129
8 Energy Balance Approach to Fracture in Anisotropic Elastic Material 163
9 Ply Crack Formation in Symmetric Cross-ply Laminates 189
10 Theoretical Basis for a Model of Ply Cracking in General Symmetric Laminates 223
11 Ply Cracking in Cross-ply Laminates Subject to Biaxial Bending 249
12 Energy-based Delamination Theory for Biaxial Loading in the Presence of Thermal Stresses 271
13 Energy Methods for Fatigue Damage Modelling of Laminates 297
14 Model of Composite Degradation Due to Environmental Damage 329
15 Maxwell's Far-field Methodology Predicting Elastic Properties of Multiphase Composites Reinforced with Aligned Transversely Isotropic Spheroids 345
16 Debonding Models and Application to Fibre Fractures and Matrix Cracks 379
17 Interacting Bridged Ply Cracks in a Cross-ply Laminate 425
18 Theoretical Basis for a Model of Ply Cracking in General Symmetric Laminates 447
19 Stress-transfer Mechanics for Biaxial Bending 479
Appendix A: Solution for Shear of Isolated Spherical Particle in an Infinite Matrix 503
Appendix B: Elasticity Analysis of Two Concentric Cylinders 510
Appendix C: Gibbs Energy per Unit Volume for a Cracked Laminate 518
Appendix D: Crack Closure Conditions for Laminates 523
Appendix E: Derivation of the Solution of Nonlinear Equations 531
Appendix F: Analysis for Transversely Isotropic Cylindrical Inclusions 536
Appendix G: Recurrence Relations, Differential Equations and Boundary Conditions 541
Appendix H: Solution of Differential Equations 546
Appendix I: Energy Balance Equation for Delamination Growth 551
Appendix J: Derivation of Energy-based Fracture Criterion for Bridged Cracks 554
Appendix K: Numerical Solution of Integral Equations for Bridged Cracks 560
Index 565
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.