Progress in Adhesion and Adhesives, Volume 5
-15%
portes grátis
Progress in Adhesion and Adhesives, Volume 5
Mittal, K. L.
John Wiley & Sons Inc
10/2020
480
Dura
Inglês
9781119748069
15 a 20 dias
760
Descrição não disponível.
Preface xv
1 Physico-Tribo-Mechanical and Adhesion Behaviour of Plasma Treated Steel and Its Alloys: A Critical Review 1
Jitendra K. Katiyar and Vinay Kumar Patel
1.1 Introduction 2
1.2 Single Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 3
1.3 Double Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 14
1.4 Tribological Properties of Plasma Treated Steel and Its Grades 19
1.5 Conclusions 27
References 28
2 Debonding on Demand of Adhesively Bonded Joints: A Critical Review 33
Mariana D. Banea
2.1 Introduction 33
2.2 Design of Structures with Debondable Adhesives 34
2.3 Methodologies for Adhesive Debonding on Demand 35
2.3.1 Debonding on Demand of Adhesively Bonded Joints Using Reversible/Reworkable Adhesive Systems 35
2.3.1.1 Reversible Adhesive Technologies Based on Diels-Alder Chemistry 36
2.3.1.2 Supramolecular Polymers 36
2.3.2 Electrically Induced Debonding of Adhesive Joints 37
2.3.3 Debonding on Demand of Adhesively Bonded Joints Using Reactive Fillers 38
2.3.3.1 Nanoparticles 38
2.3.3.2 Microparticles 40
2.4 Summary 44
Acknowledgements 45
References 45
3 Chitosan-Catechol Conjugates-A Novel Class of Bioadhesive Polymers: A Critical Review 51
Loveleen Kaur and Inderbir Singh
3.1 Introduction 51
3.1.1 Polymers Used for Developing Mucoadhesive Drug Delivery Systems 52
3.1.2 Chitosan and Its Associated Problems 53
3.2 Preparation Methods for Chitosan-Catechol Conjugates 54
3.3 Characterization 55
3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 55
3.3.2 Nuclear Magnetic Resonance (NMR) 56
3.3.3 Scanning Electron Microscopy (SEM) 57
3.3.4 Differential Scanning Calorimetry (DSC) 57
3.3.5 X-ray Diffraction (XRD) 57
3.4 Properties of Chitosan-Catechol Conjugates 57
3.4.1 Stability 57
3.4.2 Permeation 58
3.4.3 Mucoadhesion 58
3.4.4 Solubility 59
3.4.5 Antibacterial Property 59
3.4.6 Mechanical Strength 60
3.4.7 Biocompatibility 60
3.4.8 Bioink for 3D Printing 60
3.5 Applications of Chitosan-Catechol Conjugates 61
3.5.1 Nanoparticles 61
3.5.2 Hydrogels 62
3.5.3 Microspheres 62
3.5.4 Sponges 64
3.5.5 Films 64
3.6 Patent Updates 64
3.7 Summary and Future Aspects 64
Acknowledgement 65
Conflict of Interest 65
References 65
4 Adhesives in the Footwear Industry: A Critical Review 69
Elena Orgiles-Calpena, Francisca Aran-Ais, Ana M. Torro-Palau and Miguel Angel Martinez Sanchez
4.1 Introduction 69
4.2 The Footwear Industry 70
4.2.1 Substrates and Adhesives 70
4.2.2 Surface Treatments 73
4.2.3 Adhesives Requirements 77
4.2.4 Bonding Stages in Footwear Manufacturing Process 78
4.2.5 Debonding Real Cases in Footwear 81
4.3 Sustainable Adhesives for the Footwear Industry 82
4.3.1 Water-Based Adhesives 82
4.3.2 Hot-Melt Adhesives 84
4.4 Future Trends in Footwer Adhesives 86
4.5 Summary 88
Acknowledgements 88
References 89
5 Nanocomposite Polymer Adhesives: A Critical Review 93
S. Kenig, H. Dodiuk, G. Otorgust and S. Gomid
5.1 Introduction 93
5.2 Nanostructuring of Adhesives - Methodology 94
5.3 Nanoparticles Types - Basic Compositions and Properties 95
5.3.1 Nanoclays 95
5.3.2 Nanosilica (NS) 96
5.3.3 POSS - Polyhedral Oligomeric Silsesquioxanes 97
5.3.4 Carbon Nanotubes (CNTs) 97
5.3.5 Graphene Nanoplatelets (GNPs) and Expanded Graphite (EG) 99
5.3.6 Inorganic Fullerenes (IFs) and Inorganic Nanotubes (INTs) of Tungsten Disulfide (WS2) 101
5.4 Adhesives Types - Basic Compositions and Properties 102
5.4.1 Epoxies 102
5.4.2 Polyurethanes (PUs) 102
5.4.3 Polyimides (PIs) 103
5.4.4 Silicones 103
5.4.5 Acrylics 104
5.5 Nanocomposite Adhesives-Composition-Properties Relationships, Reinforcement and Toughening Mechanisms 104
5.5.1 Introduction 104
5.5.2 Epoxy/Nanoclay Composite Adhesives 105
5.5.2.1 Bulk Properties 105
5.5.2.2 Adhesive Properties 107
5.5.3 Epoxy/Silica Nanocomposite Adhesives 108
5.5.3.1 Bulk Properties 108
5.5.3.2 Adhesive Properties 110
5.5.4 Epoxy/CNT Nanocomposite Adhesives 110
5.5.4.1 Bulk Properties 110
5.5.4.2 Adhesive Properties 113
5.5.5 Epoxy/POSS Nanocomposite Adhesives 115
5.5.5.1 Bulk Properties 115
5.5.5.2 Adhesive Properties 118
5.5.6 Epoxy/GNPs and EG Nanocomposite Adhesives 118
5.5.6.1 Bulk Properties 119
5.5.6.2 Adhesive Properties 122
5.5.7 Epoxy/WS2 Nanocomposite Adhesives 125
5.5.8 Polyurethane/POSS Nanocomposite Adhesives 126
5.5.8.1 Bulk Properties 126
5.5.8.2 Adhesive Properties 127
5.5.9 PU/WS2 Nanocomposite Adhesives 128
5.5.10 Polyimide/NCs Nanocomposite Adhesives 128
5.5.10.1 Bulk properties 128
5.5.10.2 Adhesive Properties 129
5.5.11 Polyimide/CNTs Nanocomposite Adhesives 129
5.5.11.1 Bulk Properties 129
5.5.11.2 Adhesive Properties 132
5.5.12 PU/NCs Nanocomposite Adhesives 132
5.5.13 Polyurethane/CNTs/GNPs Nanocomposite Adhesives 132
5.5.13.1 Bulk Properties 132
5.5.13.2 Adhesive Properties 133
5.5.14 PU/WS2 Nanocomposite Adhesives 134
5.5.15 Acrylic/Nanosilica Nanocomposite Adhesives 135
5.5.16 Acrylic/Titania and Alumina NPs Nanocomposite Adhesives 136
5.5.17 Acrylic/NCs Nanocomposite Adhesives 136
5.5.18 Acrylic/POSS Nanocomposite Adhesives 136
5.5.19 Silicone/WS2 Nanocomposite Adhesives 137
5.6 Fracture and Toughening Mechanisms 137
5.6.1 Fracture Surfaces 138
5.6.2 Toughening Micro and Nanomechanisms 138
5.7 Nanocomposite Adhesives - Applications, Challenges and Opportunities 143
5.7.1 Applications of Nanocomposite Adhesives 146
5.7.1.1 Electronics and Nanoelectronics 146
5.7.1.2 Aerospace 146
5.7.1.3 Biomedical 147
5.8 Summary 148
References 148
6 Adhesion Enhancement of Polymer Surfaces by Ion Beam Treatment: A Critical Review 169
Endu Sekhar Srinadhu, Radhey Shyam, Jatinder Kumar, Dinesh P R Thanu, Mingrui Zhao and Manish Keswani
6.1 Introduction 169
6.1.1 Ion-Solid Interactions 170
6.1.2 Computer Simulations of Ion Beam - Solid Interactions 171
6.2 Ion Beam Treatment of Polymers 172
6.3 Analysis Techniques to Analyze Post Ion Beam Treated Target Surfaces 172
6.3.1 X-ray Diffraction 173
6.3.2 Scanning Electron Microscopy 173
6.3.3 Fourier Transform Infrared Spectroscopy 174
6.3.4 Raman Spectroscopy 174
6.3.5 UV Spectroscopy 175
6.3.6 X-ray Photoelectron Spectroscopy (XPS) 175
6.3.7 Wettability Measurements 176
6.3.8 Atomic Force Microscopy (AFM) 177
6.4 Biomedical Applications 178
6.4.1 Poly(lactic acid) (PLA) 178
6.4.2 Poly(L-lactic acid) (PLLA) 180
6.4.3 Poly(L-lactide) (PLA), Poly(D, L-Lactide-coglycolide) (PDLG) and Poly(L-lactide-cocaprolactone) (PLC) Films 180
6.5 Microelectronics Applications 182
6.5.1 Bisphenol A polycarbonate (PC) 182
6.5.2 Aluminum Films on Bisphenol A Polycarbonate (PC) 184
6.5.3 Indium Tin Oxide (ITO) Films on Bisphenol A Polycarbonate (PC) 185
6.5.4 Polyimide Films 187
6.5.5 Cu/Polyimide Films 187
6.5.6 Multiple Ion Beam Treatment of Polymers 188
6.6 Summary 190
References 190
7 Non-Wettable Surfaces - From Natural to Artificial and Applications: A Critical Review 195
Andrew Terhemen Tyowua, Msugh Targema and Emmanuel Etim Ubuo
7.1 Introduction 195
7.2 The Basic Wetting Models 198
7.3 Non-Wettable Surfaces 200
7.3.1 Non-Wettable Surfaces in Nature: Their Importance to Plants and Animals 200
7.3.2 Artificial Non-Wettable Surfaces 206
7.3.3 Preparation of Non-Wettable Surfaces 208
7.3.4 Properties of Non-Wettable Surfaces 214
7.4 Applications of Non-Wettable Surfaces and Challenges 217
7.4.1 Non-Wettable Surfaces for Water Collection and Transportation 217
7.4.2 Non-Wettable Surfaces as Self-Cleaning and Icephobic Surfaces 218
7.4.3 Non-Wettable Surfaces for Biomedical Applications 219
7.5 Summary and Future Prospects 220
Acknowledgements 220
References 221
8 Plasma Oxidation of Polyolefins - Course of O/C Ratio from Unmodified Bulk to Surface and Finally to CO2 in the Gas Phase: A Critical Review 233
J. Friedrich, M. Jablonska and G. Hidde
8.1 Introduction 234
8.2 Chemistry of Polyolefin Oxidation 235
8.2.1 Binding Energies of Covalent Bonds in Polyolefins 235
8.2.2 Thermal Oxidation and Auto-Oxidation on the Surface of Paraffins 236
8.2.3 Decarboxylation and Emission of CO2 237
8.2.4 Formation of Gaseous Low-Molecular Weight Products on Thermal or Photo-Oxidation in Analogy to Oxygen Plasma Treatment 238
8.3 Processes at Polyolefin Surfaces 239
8.3.1 Formation of Gaseous Low-Molecular Weight Products on Exposure to Oxygen Plasma 239
8.3.2 Introduction of Oxygen-Containing Groups at the Surface of Polyolefins on Exposure to Oxygen Plasma 240
8.3.3 Formation and Characterization of LMWOM 243
8.3.3.1 LMWOM Formation by Fragmentation and Oxidation of Macromolecules 243
8.3.3.2 LMWOM Formation by Re-Deposition of Fragments or Plasma Polymerization 245
8.4 Depth Profiles at the Surface of Polyolefins 246
8.4.1 Analytical Depth Profiles 246
8.4.2 Measured Oxidation Depth Profiles 247
8.4.2.1 Plasma Parameters Influencing the Depth Profile and Its Range 247
8.4.2.2 Angle-Resolved XPS. 247
8.4.2.3 Dynamic SIMS 247
8.4.2.4 Sputtering 248
8.4.2.5 Post-Plasma Oxidation 248
8.5 Modes of the Oxidation Process at Polyolefin Surfaces on Exposure to Oxygen Plasma 249
8.6 Summary and Conclusions 251
References 253
9 Procedures for the Characterization of Wettability and Surface Free Energy of Textiles - Use, Abuse, Misuse and Proper Use: A Critical Review 259
Thomas Bahners and Jochen S. Gutmann
9.1 Introduction 260
9.2 Peculiarities of Textile Substrates 262
9.2.1 Geometric Hierarchy 262
9.2.2 Attempts to Model the Textile Geometry 266
9.3 Characterization of Fabrics - Drop Tests 270
9.3.1 Contact Angle Measurements 270
9.3.2 Characterization by Roll-Off Angle 272
9.3.3 Drop Penetration Tests 273
9.3.4 Characterization of Fabrics - Wicking or Rising Height Test 277
9.3.5 Fabric Characterization Based on The Wilhelmy Method 278
9.4 Contact Angle Measurement on Single Fibers 279
9.5 Methods for the Characterization of Fiber Bundles 280
9.5.1 The Washburn Approach - Wilhelmy Wicking Method 280
9.5.2 Inverse Gas Chromatography (IGC) 282
9.5.3 Using IGC as an Alternative Concept to Characterize Adhesion-Related Surface Modification 283
9.6 Summary and Concluding Remarks 284
References 288
10 Bioadhesive Nanoformulations-Concepts and Preclinical Studies: A Critical Review 295
Monika Joshi, Ravi Shankar and Kamla Pathak
10.1 Introduction to Nanoformulations 295
10.2 Types of Nanoformulations 296
10.2.1 Liposomes 296
10.2.2 Ethosomes 297
10.2.3 Niosomes 297
10.2.4 Nanoparticles 298
10.2.4.1 Polymeric Nanoparticles 298
10.2.4.2 Lipid Nanoparticles 298
10.2.5 Polymeric Micelles (PMs) 298
10.2.6 Nanoemulsions 299
10.2.7 Dendrimers 299
10.3 Bioadhesion: Physiological and Pharmaceutical Aspects 299
10.4 Bioadhesive Polymers 300
10.4.1 Non-Specific Bioadhesive Polymers (Old Generation) 300
10.4.1.1 Cationic Polymers 300
10.4.1.2 Anionic Polymers 300
10.4.2 Specific Bioadhesive Polymers 301
10.4.2.1 Thiolated Polymers 301
10.4.2.2 Lectin-Based Polymers 301
10.5 Mechanism of Bioadhesion 302
10.6 Bioadhesive Nanoformulations and Their Supremacy Over Other Systems 302
10.6.1 Buccal/Sublingual Administration 303
10.6.2 Intranasal Bioadhesive Nanoformulations for Various Therapeutic Purposes 306
10.6.3 Ocular Administration 310
10.6.4 Oral Administration 313
10.6.5 Summary 318
References 319
11 Laser-Assisted Tailoring of Surface Wettability -Fundamentals and Applications: A Critical Review 331
Alina Peethan, V. K. Unnikrishnan, Santhosh Chidangil and Sajan D. George
11.1 Introduction 332
11.1.1 Laser-Matter Interaction 332
11.1.2 Wettability and Laser-Assisted Tailoring of Surface Wettability 334
11.2 Nanosecond Laser Patterning 337
11.3 Picosecond Laser Patterning 341
11.4 Femtosecond Laser Patterning 344
11.5 Applications of laser textured surfaces 350
11.5.1 Biomedical applications 350
11.5.2 Water harvesting 351
11.5.3 Anti-Bacterial Activity 353
11.5.4 Spectroscopic Applications 353
11.5.5 Other Applications 354
11.6 Summary 357
Conflict of Interest 358
Acknowledgments 358
References 358
12 Improved Mathematical Models of Thermal Residual Stresses in Functionally Graded Adhesively Bonded Joints: A Critical Review 367
M. Kemal Apalak and M. Didem Demirbas
12.1 Introduction 368
12.2 Mechanical and Physical Relations 374
12.3 Heat Transfer Model 377
12.4 Thermal Initial and Boundary Conditions 380
12.5 Elasticity Equations in Terms of Displacements 382
12.6 Finite-Difference Discretization 385
12.7 Implementation of Boundary Conditions 387
12.8 Results 389
12.9 Summary and Conclusions 408
Acknowledgement 409
References 410
13 Adhesion of Colloids and Bacteria to Porous Media: A Critical Review 417
Runwei Li, Changfu Wei, Hefa Cheng and Gang Chen
13.1 Introduction 417
13.2 Adhesion Theory 418
13.2.1 Dupre Energy of Adhesion 418
13.2.2 Lifshitz-van der Waals Forces 421
13.2.3 Lewis Acid/Base Forces 422
13.2.4 Hydration Forces 424
13.2.5 Electrical Double Layer Forces 425
13.2.6 Quantitative Structure-Activity Relationship (QSAR) Analysis 426
13.2.7 Capillary Forces 426
13.3 Adhesion of Colloids and Bacteria at Interfaces 428
13.3.1 Adhesion at the Liquid-Solid Interface 428
13.3.2 Adhesion at the Air-Water Interface 431
13.3.2.1 Water Structure and Hydrogen Bonding 431
13.3.2.2 Air-Water Interface Charges 434
13.3.2.3 Impact of Surfactants 435
13.3.2.4 Air-Water Interface in a Porous Medium 437
13.3.2.5 Force Balance at the Air-Water Interface 438
13.3.2.6 Impact of Air-Water Interface on Adhesion to Porous Media 439
13.4 Adhesion Theory Implementations 440
13.4.1 Water Saturation and Air-Water Interface in Porous Media 440
13.4.2 Liquid-Gas-Solid Three-Phase Interface and Particle Transport 441
13.4.3 Force Quantification 443
13.4.4 Atomic Force Microscopy Measurements 445
13.4.5 Linkage of Interactions and Transport 446
13.4.6 Surfactant Attachment at the Air-Water Interface 448
13.5 Summary 450
Acknowledgments 450
References 451
1 Physico-Tribo-Mechanical and Adhesion Behaviour of Plasma Treated Steel and Its Alloys: A Critical Review 1
Jitendra K. Katiyar and Vinay Kumar Patel
1.1 Introduction 2
1.2 Single Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 3
1.3 Double Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 14
1.4 Tribological Properties of Plasma Treated Steel and Its Grades 19
1.5 Conclusions 27
References 28
2 Debonding on Demand of Adhesively Bonded Joints: A Critical Review 33
Mariana D. Banea
2.1 Introduction 33
2.2 Design of Structures with Debondable Adhesives 34
2.3 Methodologies for Adhesive Debonding on Demand 35
2.3.1 Debonding on Demand of Adhesively Bonded Joints Using Reversible/Reworkable Adhesive Systems 35
2.3.1.1 Reversible Adhesive Technologies Based on Diels-Alder Chemistry 36
2.3.1.2 Supramolecular Polymers 36
2.3.2 Electrically Induced Debonding of Adhesive Joints 37
2.3.3 Debonding on Demand of Adhesively Bonded Joints Using Reactive Fillers 38
2.3.3.1 Nanoparticles 38
2.3.3.2 Microparticles 40
2.4 Summary 44
Acknowledgements 45
References 45
3 Chitosan-Catechol Conjugates-A Novel Class of Bioadhesive Polymers: A Critical Review 51
Loveleen Kaur and Inderbir Singh
3.1 Introduction 51
3.1.1 Polymers Used for Developing Mucoadhesive Drug Delivery Systems 52
3.1.2 Chitosan and Its Associated Problems 53
3.2 Preparation Methods for Chitosan-Catechol Conjugates 54
3.3 Characterization 55
3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 55
3.3.2 Nuclear Magnetic Resonance (NMR) 56
3.3.3 Scanning Electron Microscopy (SEM) 57
3.3.4 Differential Scanning Calorimetry (DSC) 57
3.3.5 X-ray Diffraction (XRD) 57
3.4 Properties of Chitosan-Catechol Conjugates 57
3.4.1 Stability 57
3.4.2 Permeation 58
3.4.3 Mucoadhesion 58
3.4.4 Solubility 59
3.4.5 Antibacterial Property 59
3.4.6 Mechanical Strength 60
3.4.7 Biocompatibility 60
3.4.8 Bioink for 3D Printing 60
3.5 Applications of Chitosan-Catechol Conjugates 61
3.5.1 Nanoparticles 61
3.5.2 Hydrogels 62
3.5.3 Microspheres 62
3.5.4 Sponges 64
3.5.5 Films 64
3.6 Patent Updates 64
3.7 Summary and Future Aspects 64
Acknowledgement 65
Conflict of Interest 65
References 65
4 Adhesives in the Footwear Industry: A Critical Review 69
Elena Orgiles-Calpena, Francisca Aran-Ais, Ana M. Torro-Palau and Miguel Angel Martinez Sanchez
4.1 Introduction 69
4.2 The Footwear Industry 70
4.2.1 Substrates and Adhesives 70
4.2.2 Surface Treatments 73
4.2.3 Adhesives Requirements 77
4.2.4 Bonding Stages in Footwear Manufacturing Process 78
4.2.5 Debonding Real Cases in Footwear 81
4.3 Sustainable Adhesives for the Footwear Industry 82
4.3.1 Water-Based Adhesives 82
4.3.2 Hot-Melt Adhesives 84
4.4 Future Trends in Footwer Adhesives 86
4.5 Summary 88
Acknowledgements 88
References 89
5 Nanocomposite Polymer Adhesives: A Critical Review 93
S. Kenig, H. Dodiuk, G. Otorgust and S. Gomid
5.1 Introduction 93
5.2 Nanostructuring of Adhesives - Methodology 94
5.3 Nanoparticles Types - Basic Compositions and Properties 95
5.3.1 Nanoclays 95
5.3.2 Nanosilica (NS) 96
5.3.3 POSS - Polyhedral Oligomeric Silsesquioxanes 97
5.3.4 Carbon Nanotubes (CNTs) 97
5.3.5 Graphene Nanoplatelets (GNPs) and Expanded Graphite (EG) 99
5.3.6 Inorganic Fullerenes (IFs) and Inorganic Nanotubes (INTs) of Tungsten Disulfide (WS2) 101
5.4 Adhesives Types - Basic Compositions and Properties 102
5.4.1 Epoxies 102
5.4.2 Polyurethanes (PUs) 102
5.4.3 Polyimides (PIs) 103
5.4.4 Silicones 103
5.4.5 Acrylics 104
5.5 Nanocomposite Adhesives-Composition-Properties Relationships, Reinforcement and Toughening Mechanisms 104
5.5.1 Introduction 104
5.5.2 Epoxy/Nanoclay Composite Adhesives 105
5.5.2.1 Bulk Properties 105
5.5.2.2 Adhesive Properties 107
5.5.3 Epoxy/Silica Nanocomposite Adhesives 108
5.5.3.1 Bulk Properties 108
5.5.3.2 Adhesive Properties 110
5.5.4 Epoxy/CNT Nanocomposite Adhesives 110
5.5.4.1 Bulk Properties 110
5.5.4.2 Adhesive Properties 113
5.5.5 Epoxy/POSS Nanocomposite Adhesives 115
5.5.5.1 Bulk Properties 115
5.5.5.2 Adhesive Properties 118
5.5.6 Epoxy/GNPs and EG Nanocomposite Adhesives 118
5.5.6.1 Bulk Properties 119
5.5.6.2 Adhesive Properties 122
5.5.7 Epoxy/WS2 Nanocomposite Adhesives 125
5.5.8 Polyurethane/POSS Nanocomposite Adhesives 126
5.5.8.1 Bulk Properties 126
5.5.8.2 Adhesive Properties 127
5.5.9 PU/WS2 Nanocomposite Adhesives 128
5.5.10 Polyimide/NCs Nanocomposite Adhesives 128
5.5.10.1 Bulk properties 128
5.5.10.2 Adhesive Properties 129
5.5.11 Polyimide/CNTs Nanocomposite Adhesives 129
5.5.11.1 Bulk Properties 129
5.5.11.2 Adhesive Properties 132
5.5.12 PU/NCs Nanocomposite Adhesives 132
5.5.13 Polyurethane/CNTs/GNPs Nanocomposite Adhesives 132
5.5.13.1 Bulk Properties 132
5.5.13.2 Adhesive Properties 133
5.5.14 PU/WS2 Nanocomposite Adhesives 134
5.5.15 Acrylic/Nanosilica Nanocomposite Adhesives 135
5.5.16 Acrylic/Titania and Alumina NPs Nanocomposite Adhesives 136
5.5.17 Acrylic/NCs Nanocomposite Adhesives 136
5.5.18 Acrylic/POSS Nanocomposite Adhesives 136
5.5.19 Silicone/WS2 Nanocomposite Adhesives 137
5.6 Fracture and Toughening Mechanisms 137
5.6.1 Fracture Surfaces 138
5.6.2 Toughening Micro and Nanomechanisms 138
5.7 Nanocomposite Adhesives - Applications, Challenges and Opportunities 143
5.7.1 Applications of Nanocomposite Adhesives 146
5.7.1.1 Electronics and Nanoelectronics 146
5.7.1.2 Aerospace 146
5.7.1.3 Biomedical 147
5.8 Summary 148
References 148
6 Adhesion Enhancement of Polymer Surfaces by Ion Beam Treatment: A Critical Review 169
Endu Sekhar Srinadhu, Radhey Shyam, Jatinder Kumar, Dinesh P R Thanu, Mingrui Zhao and Manish Keswani
6.1 Introduction 169
6.1.1 Ion-Solid Interactions 170
6.1.2 Computer Simulations of Ion Beam - Solid Interactions 171
6.2 Ion Beam Treatment of Polymers 172
6.3 Analysis Techniques to Analyze Post Ion Beam Treated Target Surfaces 172
6.3.1 X-ray Diffraction 173
6.3.2 Scanning Electron Microscopy 173
6.3.3 Fourier Transform Infrared Spectroscopy 174
6.3.4 Raman Spectroscopy 174
6.3.5 UV Spectroscopy 175
6.3.6 X-ray Photoelectron Spectroscopy (XPS) 175
6.3.7 Wettability Measurements 176
6.3.8 Atomic Force Microscopy (AFM) 177
6.4 Biomedical Applications 178
6.4.1 Poly(lactic acid) (PLA) 178
6.4.2 Poly(L-lactic acid) (PLLA) 180
6.4.3 Poly(L-lactide) (PLA), Poly(D, L-Lactide-coglycolide) (PDLG) and Poly(L-lactide-cocaprolactone) (PLC) Films 180
6.5 Microelectronics Applications 182
6.5.1 Bisphenol A polycarbonate (PC) 182
6.5.2 Aluminum Films on Bisphenol A Polycarbonate (PC) 184
6.5.3 Indium Tin Oxide (ITO) Films on Bisphenol A Polycarbonate (PC) 185
6.5.4 Polyimide Films 187
6.5.5 Cu/Polyimide Films 187
6.5.6 Multiple Ion Beam Treatment of Polymers 188
6.6 Summary 190
References 190
7 Non-Wettable Surfaces - From Natural to Artificial and Applications: A Critical Review 195
Andrew Terhemen Tyowua, Msugh Targema and Emmanuel Etim Ubuo
7.1 Introduction 195
7.2 The Basic Wetting Models 198
7.3 Non-Wettable Surfaces 200
7.3.1 Non-Wettable Surfaces in Nature: Their Importance to Plants and Animals 200
7.3.2 Artificial Non-Wettable Surfaces 206
7.3.3 Preparation of Non-Wettable Surfaces 208
7.3.4 Properties of Non-Wettable Surfaces 214
7.4 Applications of Non-Wettable Surfaces and Challenges 217
7.4.1 Non-Wettable Surfaces for Water Collection and Transportation 217
7.4.2 Non-Wettable Surfaces as Self-Cleaning and Icephobic Surfaces 218
7.4.3 Non-Wettable Surfaces for Biomedical Applications 219
7.5 Summary and Future Prospects 220
Acknowledgements 220
References 221
8 Plasma Oxidation of Polyolefins - Course of O/C Ratio from Unmodified Bulk to Surface and Finally to CO2 in the Gas Phase: A Critical Review 233
J. Friedrich, M. Jablonska and G. Hidde
8.1 Introduction 234
8.2 Chemistry of Polyolefin Oxidation 235
8.2.1 Binding Energies of Covalent Bonds in Polyolefins 235
8.2.2 Thermal Oxidation and Auto-Oxidation on the Surface of Paraffins 236
8.2.3 Decarboxylation and Emission of CO2 237
8.2.4 Formation of Gaseous Low-Molecular Weight Products on Thermal or Photo-Oxidation in Analogy to Oxygen Plasma Treatment 238
8.3 Processes at Polyolefin Surfaces 239
8.3.1 Formation of Gaseous Low-Molecular Weight Products on Exposure to Oxygen Plasma 239
8.3.2 Introduction of Oxygen-Containing Groups at the Surface of Polyolefins on Exposure to Oxygen Plasma 240
8.3.3 Formation and Characterization of LMWOM 243
8.3.3.1 LMWOM Formation by Fragmentation and Oxidation of Macromolecules 243
8.3.3.2 LMWOM Formation by Re-Deposition of Fragments or Plasma Polymerization 245
8.4 Depth Profiles at the Surface of Polyolefins 246
8.4.1 Analytical Depth Profiles 246
8.4.2 Measured Oxidation Depth Profiles 247
8.4.2.1 Plasma Parameters Influencing the Depth Profile and Its Range 247
8.4.2.2 Angle-Resolved XPS. 247
8.4.2.3 Dynamic SIMS 247
8.4.2.4 Sputtering 248
8.4.2.5 Post-Plasma Oxidation 248
8.5 Modes of the Oxidation Process at Polyolefin Surfaces on Exposure to Oxygen Plasma 249
8.6 Summary and Conclusions 251
References 253
9 Procedures for the Characterization of Wettability and Surface Free Energy of Textiles - Use, Abuse, Misuse and Proper Use: A Critical Review 259
Thomas Bahners and Jochen S. Gutmann
9.1 Introduction 260
9.2 Peculiarities of Textile Substrates 262
9.2.1 Geometric Hierarchy 262
9.2.2 Attempts to Model the Textile Geometry 266
9.3 Characterization of Fabrics - Drop Tests 270
9.3.1 Contact Angle Measurements 270
9.3.2 Characterization by Roll-Off Angle 272
9.3.3 Drop Penetration Tests 273
9.3.4 Characterization of Fabrics - Wicking or Rising Height Test 277
9.3.5 Fabric Characterization Based on The Wilhelmy Method 278
9.4 Contact Angle Measurement on Single Fibers 279
9.5 Methods for the Characterization of Fiber Bundles 280
9.5.1 The Washburn Approach - Wilhelmy Wicking Method 280
9.5.2 Inverse Gas Chromatography (IGC) 282
9.5.3 Using IGC as an Alternative Concept to Characterize Adhesion-Related Surface Modification 283
9.6 Summary and Concluding Remarks 284
References 288
10 Bioadhesive Nanoformulations-Concepts and Preclinical Studies: A Critical Review 295
Monika Joshi, Ravi Shankar and Kamla Pathak
10.1 Introduction to Nanoformulations 295
10.2 Types of Nanoformulations 296
10.2.1 Liposomes 296
10.2.2 Ethosomes 297
10.2.3 Niosomes 297
10.2.4 Nanoparticles 298
10.2.4.1 Polymeric Nanoparticles 298
10.2.4.2 Lipid Nanoparticles 298
10.2.5 Polymeric Micelles (PMs) 298
10.2.6 Nanoemulsions 299
10.2.7 Dendrimers 299
10.3 Bioadhesion: Physiological and Pharmaceutical Aspects 299
10.4 Bioadhesive Polymers 300
10.4.1 Non-Specific Bioadhesive Polymers (Old Generation) 300
10.4.1.1 Cationic Polymers 300
10.4.1.2 Anionic Polymers 300
10.4.2 Specific Bioadhesive Polymers 301
10.4.2.1 Thiolated Polymers 301
10.4.2.2 Lectin-Based Polymers 301
10.5 Mechanism of Bioadhesion 302
10.6 Bioadhesive Nanoformulations and Their Supremacy Over Other Systems 302
10.6.1 Buccal/Sublingual Administration 303
10.6.2 Intranasal Bioadhesive Nanoformulations for Various Therapeutic Purposes 306
10.6.3 Ocular Administration 310
10.6.4 Oral Administration 313
10.6.5 Summary 318
References 319
11 Laser-Assisted Tailoring of Surface Wettability -Fundamentals and Applications: A Critical Review 331
Alina Peethan, V. K. Unnikrishnan, Santhosh Chidangil and Sajan D. George
11.1 Introduction 332
11.1.1 Laser-Matter Interaction 332
11.1.2 Wettability and Laser-Assisted Tailoring of Surface Wettability 334
11.2 Nanosecond Laser Patterning 337
11.3 Picosecond Laser Patterning 341
11.4 Femtosecond Laser Patterning 344
11.5 Applications of laser textured surfaces 350
11.5.1 Biomedical applications 350
11.5.2 Water harvesting 351
11.5.3 Anti-Bacterial Activity 353
11.5.4 Spectroscopic Applications 353
11.5.5 Other Applications 354
11.6 Summary 357
Conflict of Interest 358
Acknowledgments 358
References 358
12 Improved Mathematical Models of Thermal Residual Stresses in Functionally Graded Adhesively Bonded Joints: A Critical Review 367
M. Kemal Apalak and M. Didem Demirbas
12.1 Introduction 368
12.2 Mechanical and Physical Relations 374
12.3 Heat Transfer Model 377
12.4 Thermal Initial and Boundary Conditions 380
12.5 Elasticity Equations in Terms of Displacements 382
12.6 Finite-Difference Discretization 385
12.7 Implementation of Boundary Conditions 387
12.8 Results 389
12.9 Summary and Conclusions 408
Acknowledgement 409
References 410
13 Adhesion of Colloids and Bacteria to Porous Media: A Critical Review 417
Runwei Li, Changfu Wei, Hefa Cheng and Gang Chen
13.1 Introduction 417
13.2 Adhesion Theory 418
13.2.1 Dupre Energy of Adhesion 418
13.2.2 Lifshitz-van der Waals Forces 421
13.2.3 Lewis Acid/Base Forces 422
13.2.4 Hydration Forces 424
13.2.5 Electrical Double Layer Forces 425
13.2.6 Quantitative Structure-Activity Relationship (QSAR) Analysis 426
13.2.7 Capillary Forces 426
13.3 Adhesion of Colloids and Bacteria at Interfaces 428
13.3.1 Adhesion at the Liquid-Solid Interface 428
13.3.2 Adhesion at the Air-Water Interface 431
13.3.2.1 Water Structure and Hydrogen Bonding 431
13.3.2.2 Air-Water Interface Charges 434
13.3.2.3 Impact of Surfactants 435
13.3.2.4 Air-Water Interface in a Porous Medium 437
13.3.2.5 Force Balance at the Air-Water Interface 438
13.3.2.6 Impact of Air-Water Interface on Adhesion to Porous Media 439
13.4 Adhesion Theory Implementations 440
13.4.1 Water Saturation and Air-Water Interface in Porous Media 440
13.4.2 Liquid-Gas-Solid Three-Phase Interface and Particle Transport 441
13.4.3 Force Quantification 443
13.4.4 Atomic Force Microscopy Measurements 445
13.4.5 Linkage of Interactions and Transport 446
13.4.6 Surfactant Attachment at the Air-Water Interface 448
13.5 Summary 450
Acknowledgments 450
References 451
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Preface xv
1 Physico-Tribo-Mechanical and Adhesion Behaviour of Plasma Treated Steel and Its Alloys: A Critical Review 1
Jitendra K. Katiyar and Vinay Kumar Patel
1.1 Introduction 2
1.2 Single Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 3
1.3 Double Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 14
1.4 Tribological Properties of Plasma Treated Steel and Its Grades 19
1.5 Conclusions 27
References 28
2 Debonding on Demand of Adhesively Bonded Joints: A Critical Review 33
Mariana D. Banea
2.1 Introduction 33
2.2 Design of Structures with Debondable Adhesives 34
2.3 Methodologies for Adhesive Debonding on Demand 35
2.3.1 Debonding on Demand of Adhesively Bonded Joints Using Reversible/Reworkable Adhesive Systems 35
2.3.1.1 Reversible Adhesive Technologies Based on Diels-Alder Chemistry 36
2.3.1.2 Supramolecular Polymers 36
2.3.2 Electrically Induced Debonding of Adhesive Joints 37
2.3.3 Debonding on Demand of Adhesively Bonded Joints Using Reactive Fillers 38
2.3.3.1 Nanoparticles 38
2.3.3.2 Microparticles 40
2.4 Summary 44
Acknowledgements 45
References 45
3 Chitosan-Catechol Conjugates-A Novel Class of Bioadhesive Polymers: A Critical Review 51
Loveleen Kaur and Inderbir Singh
3.1 Introduction 51
3.1.1 Polymers Used for Developing Mucoadhesive Drug Delivery Systems 52
3.1.2 Chitosan and Its Associated Problems 53
3.2 Preparation Methods for Chitosan-Catechol Conjugates 54
3.3 Characterization 55
3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 55
3.3.2 Nuclear Magnetic Resonance (NMR) 56
3.3.3 Scanning Electron Microscopy (SEM) 57
3.3.4 Differential Scanning Calorimetry (DSC) 57
3.3.5 X-ray Diffraction (XRD) 57
3.4 Properties of Chitosan-Catechol Conjugates 57
3.4.1 Stability 57
3.4.2 Permeation 58
3.4.3 Mucoadhesion 58
3.4.4 Solubility 59
3.4.5 Antibacterial Property 59
3.4.6 Mechanical Strength 60
3.4.7 Biocompatibility 60
3.4.8 Bioink for 3D Printing 60
3.5 Applications of Chitosan-Catechol Conjugates 61
3.5.1 Nanoparticles 61
3.5.2 Hydrogels 62
3.5.3 Microspheres 62
3.5.4 Sponges 64
3.5.5 Films 64
3.6 Patent Updates 64
3.7 Summary and Future Aspects 64
Acknowledgement 65
Conflict of Interest 65
References 65
4 Adhesives in the Footwear Industry: A Critical Review 69
Elena Orgiles-Calpena, Francisca Aran-Ais, Ana M. Torro-Palau and Miguel Angel Martinez Sanchez
4.1 Introduction 69
4.2 The Footwear Industry 70
4.2.1 Substrates and Adhesives 70
4.2.2 Surface Treatments 73
4.2.3 Adhesives Requirements 77
4.2.4 Bonding Stages in Footwear Manufacturing Process 78
4.2.5 Debonding Real Cases in Footwear 81
4.3 Sustainable Adhesives for the Footwear Industry 82
4.3.1 Water-Based Adhesives 82
4.3.2 Hot-Melt Adhesives 84
4.4 Future Trends in Footwer Adhesives 86
4.5 Summary 88
Acknowledgements 88
References 89
5 Nanocomposite Polymer Adhesives: A Critical Review 93
S. Kenig, H. Dodiuk, G. Otorgust and S. Gomid
5.1 Introduction 93
5.2 Nanostructuring of Adhesives - Methodology 94
5.3 Nanoparticles Types - Basic Compositions and Properties 95
5.3.1 Nanoclays 95
5.3.2 Nanosilica (NS) 96
5.3.3 POSS - Polyhedral Oligomeric Silsesquioxanes 97
5.3.4 Carbon Nanotubes (CNTs) 97
5.3.5 Graphene Nanoplatelets (GNPs) and Expanded Graphite (EG) 99
5.3.6 Inorganic Fullerenes (IFs) and Inorganic Nanotubes (INTs) of Tungsten Disulfide (WS2) 101
5.4 Adhesives Types - Basic Compositions and Properties 102
5.4.1 Epoxies 102
5.4.2 Polyurethanes (PUs) 102
5.4.3 Polyimides (PIs) 103
5.4.4 Silicones 103
5.4.5 Acrylics 104
5.5 Nanocomposite Adhesives-Composition-Properties Relationships, Reinforcement and Toughening Mechanisms 104
5.5.1 Introduction 104
5.5.2 Epoxy/Nanoclay Composite Adhesives 105
5.5.2.1 Bulk Properties 105
5.5.2.2 Adhesive Properties 107
5.5.3 Epoxy/Silica Nanocomposite Adhesives 108
5.5.3.1 Bulk Properties 108
5.5.3.2 Adhesive Properties 110
5.5.4 Epoxy/CNT Nanocomposite Adhesives 110
5.5.4.1 Bulk Properties 110
5.5.4.2 Adhesive Properties 113
5.5.5 Epoxy/POSS Nanocomposite Adhesives 115
5.5.5.1 Bulk Properties 115
5.5.5.2 Adhesive Properties 118
5.5.6 Epoxy/GNPs and EG Nanocomposite Adhesives 118
5.5.6.1 Bulk Properties 119
5.5.6.2 Adhesive Properties 122
5.5.7 Epoxy/WS2 Nanocomposite Adhesives 125
5.5.8 Polyurethane/POSS Nanocomposite Adhesives 126
5.5.8.1 Bulk Properties 126
5.5.8.2 Adhesive Properties 127
5.5.9 PU/WS2 Nanocomposite Adhesives 128
5.5.10 Polyimide/NCs Nanocomposite Adhesives 128
5.5.10.1 Bulk properties 128
5.5.10.2 Adhesive Properties 129
5.5.11 Polyimide/CNTs Nanocomposite Adhesives 129
5.5.11.1 Bulk Properties 129
5.5.11.2 Adhesive Properties 132
5.5.12 PU/NCs Nanocomposite Adhesives 132
5.5.13 Polyurethane/CNTs/GNPs Nanocomposite Adhesives 132
5.5.13.1 Bulk Properties 132
5.5.13.2 Adhesive Properties 133
5.5.14 PU/WS2 Nanocomposite Adhesives 134
5.5.15 Acrylic/Nanosilica Nanocomposite Adhesives 135
5.5.16 Acrylic/Titania and Alumina NPs Nanocomposite Adhesives 136
5.5.17 Acrylic/NCs Nanocomposite Adhesives 136
5.5.18 Acrylic/POSS Nanocomposite Adhesives 136
5.5.19 Silicone/WS2 Nanocomposite Adhesives 137
5.6 Fracture and Toughening Mechanisms 137
5.6.1 Fracture Surfaces 138
5.6.2 Toughening Micro and Nanomechanisms 138
5.7 Nanocomposite Adhesives - Applications, Challenges and Opportunities 143
5.7.1 Applications of Nanocomposite Adhesives 146
5.7.1.1 Electronics and Nanoelectronics 146
5.7.1.2 Aerospace 146
5.7.1.3 Biomedical 147
5.8 Summary 148
References 148
6 Adhesion Enhancement of Polymer Surfaces by Ion Beam Treatment: A Critical Review 169
Endu Sekhar Srinadhu, Radhey Shyam, Jatinder Kumar, Dinesh P R Thanu, Mingrui Zhao and Manish Keswani
6.1 Introduction 169
6.1.1 Ion-Solid Interactions 170
6.1.2 Computer Simulations of Ion Beam - Solid Interactions 171
6.2 Ion Beam Treatment of Polymers 172
6.3 Analysis Techniques to Analyze Post Ion Beam Treated Target Surfaces 172
6.3.1 X-ray Diffraction 173
6.3.2 Scanning Electron Microscopy 173
6.3.3 Fourier Transform Infrared Spectroscopy 174
6.3.4 Raman Spectroscopy 174
6.3.5 UV Spectroscopy 175
6.3.6 X-ray Photoelectron Spectroscopy (XPS) 175
6.3.7 Wettability Measurements 176
6.3.8 Atomic Force Microscopy (AFM) 177
6.4 Biomedical Applications 178
6.4.1 Poly(lactic acid) (PLA) 178
6.4.2 Poly(L-lactic acid) (PLLA) 180
6.4.3 Poly(L-lactide) (PLA), Poly(D, L-Lactide-coglycolide) (PDLG) and Poly(L-lactide-cocaprolactone) (PLC) Films 180
6.5 Microelectronics Applications 182
6.5.1 Bisphenol A polycarbonate (PC) 182
6.5.2 Aluminum Films on Bisphenol A Polycarbonate (PC) 184
6.5.3 Indium Tin Oxide (ITO) Films on Bisphenol A Polycarbonate (PC) 185
6.5.4 Polyimide Films 187
6.5.5 Cu/Polyimide Films 187
6.5.6 Multiple Ion Beam Treatment of Polymers 188
6.6 Summary 190
References 190
7 Non-Wettable Surfaces - From Natural to Artificial and Applications: A Critical Review 195
Andrew Terhemen Tyowua, Msugh Targema and Emmanuel Etim Ubuo
7.1 Introduction 195
7.2 The Basic Wetting Models 198
7.3 Non-Wettable Surfaces 200
7.3.1 Non-Wettable Surfaces in Nature: Their Importance to Plants and Animals 200
7.3.2 Artificial Non-Wettable Surfaces 206
7.3.3 Preparation of Non-Wettable Surfaces 208
7.3.4 Properties of Non-Wettable Surfaces 214
7.4 Applications of Non-Wettable Surfaces and Challenges 217
7.4.1 Non-Wettable Surfaces for Water Collection and Transportation 217
7.4.2 Non-Wettable Surfaces as Self-Cleaning and Icephobic Surfaces 218
7.4.3 Non-Wettable Surfaces for Biomedical Applications 219
7.5 Summary and Future Prospects 220
Acknowledgements 220
References 221
8 Plasma Oxidation of Polyolefins - Course of O/C Ratio from Unmodified Bulk to Surface and Finally to CO2 in the Gas Phase: A Critical Review 233
J. Friedrich, M. Jablonska and G. Hidde
8.1 Introduction 234
8.2 Chemistry of Polyolefin Oxidation 235
8.2.1 Binding Energies of Covalent Bonds in Polyolefins 235
8.2.2 Thermal Oxidation and Auto-Oxidation on the Surface of Paraffins 236
8.2.3 Decarboxylation and Emission of CO2 237
8.2.4 Formation of Gaseous Low-Molecular Weight Products on Thermal or Photo-Oxidation in Analogy to Oxygen Plasma Treatment 238
8.3 Processes at Polyolefin Surfaces 239
8.3.1 Formation of Gaseous Low-Molecular Weight Products on Exposure to Oxygen Plasma 239
8.3.2 Introduction of Oxygen-Containing Groups at the Surface of Polyolefins on Exposure to Oxygen Plasma 240
8.3.3 Formation and Characterization of LMWOM 243
8.3.3.1 LMWOM Formation by Fragmentation and Oxidation of Macromolecules 243
8.3.3.2 LMWOM Formation by Re-Deposition of Fragments or Plasma Polymerization 245
8.4 Depth Profiles at the Surface of Polyolefins 246
8.4.1 Analytical Depth Profiles 246
8.4.2 Measured Oxidation Depth Profiles 247
8.4.2.1 Plasma Parameters Influencing the Depth Profile and Its Range 247
8.4.2.2 Angle-Resolved XPS. 247
8.4.2.3 Dynamic SIMS 247
8.4.2.4 Sputtering 248
8.4.2.5 Post-Plasma Oxidation 248
8.5 Modes of the Oxidation Process at Polyolefin Surfaces on Exposure to Oxygen Plasma 249
8.6 Summary and Conclusions 251
References 253
9 Procedures for the Characterization of Wettability and Surface Free Energy of Textiles - Use, Abuse, Misuse and Proper Use: A Critical Review 259
Thomas Bahners and Jochen S. Gutmann
9.1 Introduction 260
9.2 Peculiarities of Textile Substrates 262
9.2.1 Geometric Hierarchy 262
9.2.2 Attempts to Model the Textile Geometry 266
9.3 Characterization of Fabrics - Drop Tests 270
9.3.1 Contact Angle Measurements 270
9.3.2 Characterization by Roll-Off Angle 272
9.3.3 Drop Penetration Tests 273
9.3.4 Characterization of Fabrics - Wicking or Rising Height Test 277
9.3.5 Fabric Characterization Based on The Wilhelmy Method 278
9.4 Contact Angle Measurement on Single Fibers 279
9.5 Methods for the Characterization of Fiber Bundles 280
9.5.1 The Washburn Approach - Wilhelmy Wicking Method 280
9.5.2 Inverse Gas Chromatography (IGC) 282
9.5.3 Using IGC as an Alternative Concept to Characterize Adhesion-Related Surface Modification 283
9.6 Summary and Concluding Remarks 284
References 288
10 Bioadhesive Nanoformulations-Concepts and Preclinical Studies: A Critical Review 295
Monika Joshi, Ravi Shankar and Kamla Pathak
10.1 Introduction to Nanoformulations 295
10.2 Types of Nanoformulations 296
10.2.1 Liposomes 296
10.2.2 Ethosomes 297
10.2.3 Niosomes 297
10.2.4 Nanoparticles 298
10.2.4.1 Polymeric Nanoparticles 298
10.2.4.2 Lipid Nanoparticles 298
10.2.5 Polymeric Micelles (PMs) 298
10.2.6 Nanoemulsions 299
10.2.7 Dendrimers 299
10.3 Bioadhesion: Physiological and Pharmaceutical Aspects 299
10.4 Bioadhesive Polymers 300
10.4.1 Non-Specific Bioadhesive Polymers (Old Generation) 300
10.4.1.1 Cationic Polymers 300
10.4.1.2 Anionic Polymers 300
10.4.2 Specific Bioadhesive Polymers 301
10.4.2.1 Thiolated Polymers 301
10.4.2.2 Lectin-Based Polymers 301
10.5 Mechanism of Bioadhesion 302
10.6 Bioadhesive Nanoformulations and Their Supremacy Over Other Systems 302
10.6.1 Buccal/Sublingual Administration 303
10.6.2 Intranasal Bioadhesive Nanoformulations for Various Therapeutic Purposes 306
10.6.3 Ocular Administration 310
10.6.4 Oral Administration 313
10.6.5 Summary 318
References 319
11 Laser-Assisted Tailoring of Surface Wettability -Fundamentals and Applications: A Critical Review 331
Alina Peethan, V. K. Unnikrishnan, Santhosh Chidangil and Sajan D. George
11.1 Introduction 332
11.1.1 Laser-Matter Interaction 332
11.1.2 Wettability and Laser-Assisted Tailoring of Surface Wettability 334
11.2 Nanosecond Laser Patterning 337
11.3 Picosecond Laser Patterning 341
11.4 Femtosecond Laser Patterning 344
11.5 Applications of laser textured surfaces 350
11.5.1 Biomedical applications 350
11.5.2 Water harvesting 351
11.5.3 Anti-Bacterial Activity 353
11.5.4 Spectroscopic Applications 353
11.5.5 Other Applications 354
11.6 Summary 357
Conflict of Interest 358
Acknowledgments 358
References 358
12 Improved Mathematical Models of Thermal Residual Stresses in Functionally Graded Adhesively Bonded Joints: A Critical Review 367
M. Kemal Apalak and M. Didem Demirbas
12.1 Introduction 368
12.2 Mechanical and Physical Relations 374
12.3 Heat Transfer Model 377
12.4 Thermal Initial and Boundary Conditions 380
12.5 Elasticity Equations in Terms of Displacements 382
12.6 Finite-Difference Discretization 385
12.7 Implementation of Boundary Conditions 387
12.8 Results 389
12.9 Summary and Conclusions 408
Acknowledgement 409
References 410
13 Adhesion of Colloids and Bacteria to Porous Media: A Critical Review 417
Runwei Li, Changfu Wei, Hefa Cheng and Gang Chen
13.1 Introduction 417
13.2 Adhesion Theory 418
13.2.1 Dupre Energy of Adhesion 418
13.2.2 Lifshitz-van der Waals Forces 421
13.2.3 Lewis Acid/Base Forces 422
13.2.4 Hydration Forces 424
13.2.5 Electrical Double Layer Forces 425
13.2.6 Quantitative Structure-Activity Relationship (QSAR) Analysis 426
13.2.7 Capillary Forces 426
13.3 Adhesion of Colloids and Bacteria at Interfaces 428
13.3.1 Adhesion at the Liquid-Solid Interface 428
13.3.2 Adhesion at the Air-Water Interface 431
13.3.2.1 Water Structure and Hydrogen Bonding 431
13.3.2.2 Air-Water Interface Charges 434
13.3.2.3 Impact of Surfactants 435
13.3.2.4 Air-Water Interface in a Porous Medium 437
13.3.2.5 Force Balance at the Air-Water Interface 438
13.3.2.6 Impact of Air-Water Interface on Adhesion to Porous Media 439
13.4 Adhesion Theory Implementations 440
13.4.1 Water Saturation and Air-Water Interface in Porous Media 440
13.4.2 Liquid-Gas-Solid Three-Phase Interface and Particle Transport 441
13.4.3 Force Quantification 443
13.4.4 Atomic Force Microscopy Measurements 445
13.4.5 Linkage of Interactions and Transport 446
13.4.6 Surfactant Attachment at the Air-Water Interface 448
13.5 Summary 450
Acknowledgments 450
References 451
1 Physico-Tribo-Mechanical and Adhesion Behaviour of Plasma Treated Steel and Its Alloys: A Critical Review 1
Jitendra K. Katiyar and Vinay Kumar Patel
1.1 Introduction 2
1.2 Single Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 3
1.3 Double Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 14
1.4 Tribological Properties of Plasma Treated Steel and Its Grades 19
1.5 Conclusions 27
References 28
2 Debonding on Demand of Adhesively Bonded Joints: A Critical Review 33
Mariana D. Banea
2.1 Introduction 33
2.2 Design of Structures with Debondable Adhesives 34
2.3 Methodologies for Adhesive Debonding on Demand 35
2.3.1 Debonding on Demand of Adhesively Bonded Joints Using Reversible/Reworkable Adhesive Systems 35
2.3.1.1 Reversible Adhesive Technologies Based on Diels-Alder Chemistry 36
2.3.1.2 Supramolecular Polymers 36
2.3.2 Electrically Induced Debonding of Adhesive Joints 37
2.3.3 Debonding on Demand of Adhesively Bonded Joints Using Reactive Fillers 38
2.3.3.1 Nanoparticles 38
2.3.3.2 Microparticles 40
2.4 Summary 44
Acknowledgements 45
References 45
3 Chitosan-Catechol Conjugates-A Novel Class of Bioadhesive Polymers: A Critical Review 51
Loveleen Kaur and Inderbir Singh
3.1 Introduction 51
3.1.1 Polymers Used for Developing Mucoadhesive Drug Delivery Systems 52
3.1.2 Chitosan and Its Associated Problems 53
3.2 Preparation Methods for Chitosan-Catechol Conjugates 54
3.3 Characterization 55
3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 55
3.3.2 Nuclear Magnetic Resonance (NMR) 56
3.3.3 Scanning Electron Microscopy (SEM) 57
3.3.4 Differential Scanning Calorimetry (DSC) 57
3.3.5 X-ray Diffraction (XRD) 57
3.4 Properties of Chitosan-Catechol Conjugates 57
3.4.1 Stability 57
3.4.2 Permeation 58
3.4.3 Mucoadhesion 58
3.4.4 Solubility 59
3.4.5 Antibacterial Property 59
3.4.6 Mechanical Strength 60
3.4.7 Biocompatibility 60
3.4.8 Bioink for 3D Printing 60
3.5 Applications of Chitosan-Catechol Conjugates 61
3.5.1 Nanoparticles 61
3.5.2 Hydrogels 62
3.5.3 Microspheres 62
3.5.4 Sponges 64
3.5.5 Films 64
3.6 Patent Updates 64
3.7 Summary and Future Aspects 64
Acknowledgement 65
Conflict of Interest 65
References 65
4 Adhesives in the Footwear Industry: A Critical Review 69
Elena Orgiles-Calpena, Francisca Aran-Ais, Ana M. Torro-Palau and Miguel Angel Martinez Sanchez
4.1 Introduction 69
4.2 The Footwear Industry 70
4.2.1 Substrates and Adhesives 70
4.2.2 Surface Treatments 73
4.2.3 Adhesives Requirements 77
4.2.4 Bonding Stages in Footwear Manufacturing Process 78
4.2.5 Debonding Real Cases in Footwear 81
4.3 Sustainable Adhesives for the Footwear Industry 82
4.3.1 Water-Based Adhesives 82
4.3.2 Hot-Melt Adhesives 84
4.4 Future Trends in Footwer Adhesives 86
4.5 Summary 88
Acknowledgements 88
References 89
5 Nanocomposite Polymer Adhesives: A Critical Review 93
S. Kenig, H. Dodiuk, G. Otorgust and S. Gomid
5.1 Introduction 93
5.2 Nanostructuring of Adhesives - Methodology 94
5.3 Nanoparticles Types - Basic Compositions and Properties 95
5.3.1 Nanoclays 95
5.3.2 Nanosilica (NS) 96
5.3.3 POSS - Polyhedral Oligomeric Silsesquioxanes 97
5.3.4 Carbon Nanotubes (CNTs) 97
5.3.5 Graphene Nanoplatelets (GNPs) and Expanded Graphite (EG) 99
5.3.6 Inorganic Fullerenes (IFs) and Inorganic Nanotubes (INTs) of Tungsten Disulfide (WS2) 101
5.4 Adhesives Types - Basic Compositions and Properties 102
5.4.1 Epoxies 102
5.4.2 Polyurethanes (PUs) 102
5.4.3 Polyimides (PIs) 103
5.4.4 Silicones 103
5.4.5 Acrylics 104
5.5 Nanocomposite Adhesives-Composition-Properties Relationships, Reinforcement and Toughening Mechanisms 104
5.5.1 Introduction 104
5.5.2 Epoxy/Nanoclay Composite Adhesives 105
5.5.2.1 Bulk Properties 105
5.5.2.2 Adhesive Properties 107
5.5.3 Epoxy/Silica Nanocomposite Adhesives 108
5.5.3.1 Bulk Properties 108
5.5.3.2 Adhesive Properties 110
5.5.4 Epoxy/CNT Nanocomposite Adhesives 110
5.5.4.1 Bulk Properties 110
5.5.4.2 Adhesive Properties 113
5.5.5 Epoxy/POSS Nanocomposite Adhesives 115
5.5.5.1 Bulk Properties 115
5.5.5.2 Adhesive Properties 118
5.5.6 Epoxy/GNPs and EG Nanocomposite Adhesives 118
5.5.6.1 Bulk Properties 119
5.5.6.2 Adhesive Properties 122
5.5.7 Epoxy/WS2 Nanocomposite Adhesives 125
5.5.8 Polyurethane/POSS Nanocomposite Adhesives 126
5.5.8.1 Bulk Properties 126
5.5.8.2 Adhesive Properties 127
5.5.9 PU/WS2 Nanocomposite Adhesives 128
5.5.10 Polyimide/NCs Nanocomposite Adhesives 128
5.5.10.1 Bulk properties 128
5.5.10.2 Adhesive Properties 129
5.5.11 Polyimide/CNTs Nanocomposite Adhesives 129
5.5.11.1 Bulk Properties 129
5.5.11.2 Adhesive Properties 132
5.5.12 PU/NCs Nanocomposite Adhesives 132
5.5.13 Polyurethane/CNTs/GNPs Nanocomposite Adhesives 132
5.5.13.1 Bulk Properties 132
5.5.13.2 Adhesive Properties 133
5.5.14 PU/WS2 Nanocomposite Adhesives 134
5.5.15 Acrylic/Nanosilica Nanocomposite Adhesives 135
5.5.16 Acrylic/Titania and Alumina NPs Nanocomposite Adhesives 136
5.5.17 Acrylic/NCs Nanocomposite Adhesives 136
5.5.18 Acrylic/POSS Nanocomposite Adhesives 136
5.5.19 Silicone/WS2 Nanocomposite Adhesives 137
5.6 Fracture and Toughening Mechanisms 137
5.6.1 Fracture Surfaces 138
5.6.2 Toughening Micro and Nanomechanisms 138
5.7 Nanocomposite Adhesives - Applications, Challenges and Opportunities 143
5.7.1 Applications of Nanocomposite Adhesives 146
5.7.1.1 Electronics and Nanoelectronics 146
5.7.1.2 Aerospace 146
5.7.1.3 Biomedical 147
5.8 Summary 148
References 148
6 Adhesion Enhancement of Polymer Surfaces by Ion Beam Treatment: A Critical Review 169
Endu Sekhar Srinadhu, Radhey Shyam, Jatinder Kumar, Dinesh P R Thanu, Mingrui Zhao and Manish Keswani
6.1 Introduction 169
6.1.1 Ion-Solid Interactions 170
6.1.2 Computer Simulations of Ion Beam - Solid Interactions 171
6.2 Ion Beam Treatment of Polymers 172
6.3 Analysis Techniques to Analyze Post Ion Beam Treated Target Surfaces 172
6.3.1 X-ray Diffraction 173
6.3.2 Scanning Electron Microscopy 173
6.3.3 Fourier Transform Infrared Spectroscopy 174
6.3.4 Raman Spectroscopy 174
6.3.5 UV Spectroscopy 175
6.3.6 X-ray Photoelectron Spectroscopy (XPS) 175
6.3.7 Wettability Measurements 176
6.3.8 Atomic Force Microscopy (AFM) 177
6.4 Biomedical Applications 178
6.4.1 Poly(lactic acid) (PLA) 178
6.4.2 Poly(L-lactic acid) (PLLA) 180
6.4.3 Poly(L-lactide) (PLA), Poly(D, L-Lactide-coglycolide) (PDLG) and Poly(L-lactide-cocaprolactone) (PLC) Films 180
6.5 Microelectronics Applications 182
6.5.1 Bisphenol A polycarbonate (PC) 182
6.5.2 Aluminum Films on Bisphenol A Polycarbonate (PC) 184
6.5.3 Indium Tin Oxide (ITO) Films on Bisphenol A Polycarbonate (PC) 185
6.5.4 Polyimide Films 187
6.5.5 Cu/Polyimide Films 187
6.5.6 Multiple Ion Beam Treatment of Polymers 188
6.6 Summary 190
References 190
7 Non-Wettable Surfaces - From Natural to Artificial and Applications: A Critical Review 195
Andrew Terhemen Tyowua, Msugh Targema and Emmanuel Etim Ubuo
7.1 Introduction 195
7.2 The Basic Wetting Models 198
7.3 Non-Wettable Surfaces 200
7.3.1 Non-Wettable Surfaces in Nature: Their Importance to Plants and Animals 200
7.3.2 Artificial Non-Wettable Surfaces 206
7.3.3 Preparation of Non-Wettable Surfaces 208
7.3.4 Properties of Non-Wettable Surfaces 214
7.4 Applications of Non-Wettable Surfaces and Challenges 217
7.4.1 Non-Wettable Surfaces for Water Collection and Transportation 217
7.4.2 Non-Wettable Surfaces as Self-Cleaning and Icephobic Surfaces 218
7.4.3 Non-Wettable Surfaces for Biomedical Applications 219
7.5 Summary and Future Prospects 220
Acknowledgements 220
References 221
8 Plasma Oxidation of Polyolefins - Course of O/C Ratio from Unmodified Bulk to Surface and Finally to CO2 in the Gas Phase: A Critical Review 233
J. Friedrich, M. Jablonska and G. Hidde
8.1 Introduction 234
8.2 Chemistry of Polyolefin Oxidation 235
8.2.1 Binding Energies of Covalent Bonds in Polyolefins 235
8.2.2 Thermal Oxidation and Auto-Oxidation on the Surface of Paraffins 236
8.2.3 Decarboxylation and Emission of CO2 237
8.2.4 Formation of Gaseous Low-Molecular Weight Products on Thermal or Photo-Oxidation in Analogy to Oxygen Plasma Treatment 238
8.3 Processes at Polyolefin Surfaces 239
8.3.1 Formation of Gaseous Low-Molecular Weight Products on Exposure to Oxygen Plasma 239
8.3.2 Introduction of Oxygen-Containing Groups at the Surface of Polyolefins on Exposure to Oxygen Plasma 240
8.3.3 Formation and Characterization of LMWOM 243
8.3.3.1 LMWOM Formation by Fragmentation and Oxidation of Macromolecules 243
8.3.3.2 LMWOM Formation by Re-Deposition of Fragments or Plasma Polymerization 245
8.4 Depth Profiles at the Surface of Polyolefins 246
8.4.1 Analytical Depth Profiles 246
8.4.2 Measured Oxidation Depth Profiles 247
8.4.2.1 Plasma Parameters Influencing the Depth Profile and Its Range 247
8.4.2.2 Angle-Resolved XPS. 247
8.4.2.3 Dynamic SIMS 247
8.4.2.4 Sputtering 248
8.4.2.5 Post-Plasma Oxidation 248
8.5 Modes of the Oxidation Process at Polyolefin Surfaces on Exposure to Oxygen Plasma 249
8.6 Summary and Conclusions 251
References 253
9 Procedures for the Characterization of Wettability and Surface Free Energy of Textiles - Use, Abuse, Misuse and Proper Use: A Critical Review 259
Thomas Bahners and Jochen S. Gutmann
9.1 Introduction 260
9.2 Peculiarities of Textile Substrates 262
9.2.1 Geometric Hierarchy 262
9.2.2 Attempts to Model the Textile Geometry 266
9.3 Characterization of Fabrics - Drop Tests 270
9.3.1 Contact Angle Measurements 270
9.3.2 Characterization by Roll-Off Angle 272
9.3.3 Drop Penetration Tests 273
9.3.4 Characterization of Fabrics - Wicking or Rising Height Test 277
9.3.5 Fabric Characterization Based on The Wilhelmy Method 278
9.4 Contact Angle Measurement on Single Fibers 279
9.5 Methods for the Characterization of Fiber Bundles 280
9.5.1 The Washburn Approach - Wilhelmy Wicking Method 280
9.5.2 Inverse Gas Chromatography (IGC) 282
9.5.3 Using IGC as an Alternative Concept to Characterize Adhesion-Related Surface Modification 283
9.6 Summary and Concluding Remarks 284
References 288
10 Bioadhesive Nanoformulations-Concepts and Preclinical Studies: A Critical Review 295
Monika Joshi, Ravi Shankar and Kamla Pathak
10.1 Introduction to Nanoformulations 295
10.2 Types of Nanoformulations 296
10.2.1 Liposomes 296
10.2.2 Ethosomes 297
10.2.3 Niosomes 297
10.2.4 Nanoparticles 298
10.2.4.1 Polymeric Nanoparticles 298
10.2.4.2 Lipid Nanoparticles 298
10.2.5 Polymeric Micelles (PMs) 298
10.2.6 Nanoemulsions 299
10.2.7 Dendrimers 299
10.3 Bioadhesion: Physiological and Pharmaceutical Aspects 299
10.4 Bioadhesive Polymers 300
10.4.1 Non-Specific Bioadhesive Polymers (Old Generation) 300
10.4.1.1 Cationic Polymers 300
10.4.1.2 Anionic Polymers 300
10.4.2 Specific Bioadhesive Polymers 301
10.4.2.1 Thiolated Polymers 301
10.4.2.2 Lectin-Based Polymers 301
10.5 Mechanism of Bioadhesion 302
10.6 Bioadhesive Nanoformulations and Their Supremacy Over Other Systems 302
10.6.1 Buccal/Sublingual Administration 303
10.6.2 Intranasal Bioadhesive Nanoformulations for Various Therapeutic Purposes 306
10.6.3 Ocular Administration 310
10.6.4 Oral Administration 313
10.6.5 Summary 318
References 319
11 Laser-Assisted Tailoring of Surface Wettability -Fundamentals and Applications: A Critical Review 331
Alina Peethan, V. K. Unnikrishnan, Santhosh Chidangil and Sajan D. George
11.1 Introduction 332
11.1.1 Laser-Matter Interaction 332
11.1.2 Wettability and Laser-Assisted Tailoring of Surface Wettability 334
11.2 Nanosecond Laser Patterning 337
11.3 Picosecond Laser Patterning 341
11.4 Femtosecond Laser Patterning 344
11.5 Applications of laser textured surfaces 350
11.5.1 Biomedical applications 350
11.5.2 Water harvesting 351
11.5.3 Anti-Bacterial Activity 353
11.5.4 Spectroscopic Applications 353
11.5.5 Other Applications 354
11.6 Summary 357
Conflict of Interest 358
Acknowledgments 358
References 358
12 Improved Mathematical Models of Thermal Residual Stresses in Functionally Graded Adhesively Bonded Joints: A Critical Review 367
M. Kemal Apalak and M. Didem Demirbas
12.1 Introduction 368
12.2 Mechanical and Physical Relations 374
12.3 Heat Transfer Model 377
12.4 Thermal Initial and Boundary Conditions 380
12.5 Elasticity Equations in Terms of Displacements 382
12.6 Finite-Difference Discretization 385
12.7 Implementation of Boundary Conditions 387
12.8 Results 389
12.9 Summary and Conclusions 408
Acknowledgement 409
References 410
13 Adhesion of Colloids and Bacteria to Porous Media: A Critical Review 417
Runwei Li, Changfu Wei, Hefa Cheng and Gang Chen
13.1 Introduction 417
13.2 Adhesion Theory 418
13.2.1 Dupre Energy of Adhesion 418
13.2.2 Lifshitz-van der Waals Forces 421
13.2.3 Lewis Acid/Base Forces 422
13.2.4 Hydration Forces 424
13.2.5 Electrical Double Layer Forces 425
13.2.6 Quantitative Structure-Activity Relationship (QSAR) Analysis 426
13.2.7 Capillary Forces 426
13.3 Adhesion of Colloids and Bacteria at Interfaces 428
13.3.1 Adhesion at the Liquid-Solid Interface 428
13.3.2 Adhesion at the Air-Water Interface 431
13.3.2.1 Water Structure and Hydrogen Bonding 431
13.3.2.2 Air-Water Interface Charges 434
13.3.2.3 Impact of Surfactants 435
13.3.2.4 Air-Water Interface in a Porous Medium 437
13.3.2.5 Force Balance at the Air-Water Interface 438
13.3.2.6 Impact of Air-Water Interface on Adhesion to Porous Media 439
13.4 Adhesion Theory Implementations 440
13.4.1 Water Saturation and Air-Water Interface in Porous Media 440
13.4.2 Liquid-Gas-Solid Three-Phase Interface and Particle Transport 441
13.4.3 Force Quantification 443
13.4.4 Atomic Force Microscopy Measurements 445
13.4.5 Linkage of Interactions and Transport 446
13.4.6 Surfactant Attachment at the Air-Water Interface 448
13.5 Summary 450
Acknowledgments 450
References 451
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.