LaQue's Handbook of Marine Corrosion
-15%
portes grátis
LaQue's Handbook of Marine Corrosion
Shifler, David A.
John Wiley & Sons Inc
08/2022
752
Dura
Inglês
9781119788836
15 a 20 dias
1680
Descrição não disponível.
List of Contributors xix
Preface xxi
1 The Nature of Marine Environments 1
Bopinder Phull
1.1 Introduction 1
1.2 Seawater Chemistry 2
1.2.1 Chemical Composition of Seawater 2
1.2.1.1 Role of Ions 3
1.2.1.2 Dissolved Gases 5
1.2.1.3 Scale-Forming Compounds 8
1.2.1.4 Suspended Matter 9
1.2.1.5 pH 10
1.2.1.6 Chlorination 10
1.3 Physical 11
1.3.1 Temperature 11
1.3.2 Electrolytic Resistivity of Seawater 13
1.3.3 Velocity Effects 14
1.3.4 Effects of Depth 17
1.3.5 Splash and Tidal Zones 18
1.3.6 Bottom Sediments 20
1.4 Biological Effects 21
1.4.1 Microorganisms, Biofilms, and Biofouling 21
1.5 Testing 24
References 25
2 Electrochemistry and Forms of Corrosion 29
David A. Shifler
2.1 Introduction 29
2.2 Corrosion Thermodynamics 30
2.3 Corrosion Kinetics 30
2.4 Passivity 33
2.5 Corrosion Mechanistic Modes 34
2.5.1 Stray Current Corrosion 35
2.5.2 Galvanic Corrosion 35
2.5.3 Crevice Corrosion 37
2.5.4 Pitting 38
2.5.5 Intergranular Corrosion 38
2.5.6 Microbiological-Influenced Corrosion 40
2.5.7 Dealloying 41
2.5.8 Flow-Influenced Corrosion 42
2.6 Environmentally Induced Cracking 43
2.6.1 Stress Corrosion Cracking 43
2.6.2 Fatigue and Corrosion Fatigue 44
2.6.3 High-Temperature Corrosion 45
2.7 Factors Influencing Corrosion 46
References 47
3 Atmospheric Corrosion in Marine Environments 49
David G. Enos
3.1 Introduction 49
3.2 Understanding the Environment (Important Factors) 49
3.2.1 Humidity 51
3.2.2 Temperature 53
3.2.3 Solid and Liquid Contaminants (Salt Particulates, Seawater Aerosol, Dust, etc.) 53
3.2.4 Gaseous Contaminants 55
3.2.5 Physical Environment 55
3.3 Basic Electrochemistry of Atmospheric Corrosion 57
3.4 Corrosion Testing 59
3.4.1 Accelerated Testing 59
3.4.2 Long-Term Field Testing 59
3.5 Modeling 59
3.6 Summary 60
Acknowledgment 60
References 60
4 Localized Corrosion 63
David A. Shifler
4.1 Introduction 63
4.2 Pitting 63
4.2.1 Cast Irons 65
4.2.2 Carbon Steels 66
4.2.3 Stainless Steels 66
4.2.4 Nickel Alloys 69
4.2.5 Aluminum Alloys 72
4.2.6 Copper Alloys 73
4.2.7 Titanium Alloys 77
4.3 Crevice Corrosion 78
4.3.1 Cast Irons 81
4.3.2 Carbon Steels 82
4.3.3 Stainless Steels 82
4.3.4 Nickel Alloys 86
4.3.5 Aluminum Alloys 89
4.3.6 Copper Alloys 91
4.3.7 Titanium Alloys 92
4.4 Intergranular Corrosion 93
4.4.1 Cast Irons 94
4.4.2 Carbon Steels 94
4.4.3 Stainless Steels 95
4.4.4 Nickel Alloys 97
4.4.5 Aluminum Alloys 98
4.4.6 Copper Alloys 101
4.4.7 Titanium Alloys 102
4.5 Dealloying 102
4.5.1 Cast Irons 103
4.5.2 Carbon Steels 104
4.5.3 Stainless Steels 104
4.5.4 Nickel Alloys 104
4.5.5 Aluminum Alloys 104
4.5.6 Copper Alloys 105
4.5.7 Titanium Alloys 108
References 108
Further Reading 121
5 Galvanic Corrosion 123
Roger Francis
5.1 Introduction 123
5.2 Conditions Necessary for Galvanic Corrosion 124
5.3 Factors Affecting Galvanic Corrosion 125
5.3.1 Electrode Potential 125
5.3.2 Potential Variability 126
5.3.3 Electrode Efficiency 127
5.3.4 Electrolyte 129
5.3.5 Area Ratio 129
5.3.6 Aeration and Flow Rate 132
5.3.7 Metallurgical Condition and Composition 133
5.3.8 Stifling Effects 134
5.4 Alloy Groups 135
5.4.1 Group 1 Alloys 136
5.4.2 Group 2 Alloys 136
5.4.3 Group 3 Alloys 138
5.4.4 Group 4 Alloys 140
5.5 Marine Atmospheres 142
5.5.1 Factors Affecting Atmospheric Corrosion 142
5.5.2 Materials Compatibility 143
5.5.3 Atmospheric Variability 145
5.5.4 Tropical Atmospheres 145
5.6 Methods of Prevention 147
5.6.1 Materials 147
5.6.2 Insulation and Separation 147
5.6.3 Painting/Coatings 148
5.6.4 Cathodic Protection (CP) 149
5.6.5 Inhibitors 150
5.7 Design 150
References 151
6 The Effects of Turbulent Flow on Corrosion in Seawater 155
K. Daniel Efird
6.1 Introduction 155
6.1.1 Evaluating Flow Effects 155
6.2 The Basics of Turbulent Flow and Corrosion 156
6.2.1 The Nature of Turbulent Flow 156
6.2.2 Disturbed Flow 159
6.3 Erosion-Corrosion 159
6.3.1 Cavitation Corrosion 160
6.4 Flow Effects for Specific Materials 161
6.4.1 Carbon and Low Alloy Steels and Cast Irons 161
6.4.2 Copper Alloys 162
6.4.3 Passive Alloys 163
6.5 Flow Effects in Specific Facility Applications 164
6.A Wall Shear Stress and Mass Transfer Coefficient Defined 167
6.A.1 Wall Shear Stress 167
6.A.2 Mass Transfer Coefficient 168
6.A.3 Interrelationship of Mass Transfer Coefficient and Wall Shear Stress 168
6.B University of Tulsa Erosion Model 169
References 169
7 Biological Fouling and Corrosion Processes 173
Brenda J. Little and Jason S. Lee
7.1 Introduction 173
7.2 Development of Marine Fouling 174
7.2.1 Microfouling 174
7.2.2 Macrofouling 176
7.3 Influence of Marine Fouling on Corrosion 177
7.3.1 Corrosion Mechanisms Related to Generic Properties of Fouling Organisms 177
7.3.1.1 Oxygen Concentration Cells 177
7.3.1.2 Ennoblement 178
7.3.1.3 Galvanic Corrosion 178
7.3.2 Reactions Attributed to Specific Groups of Bacteria and Archaea 179
7.3.2.1 Sulfate Reduction 179
7.3.2.2 Sulfide Reactions with Specific Metals 179
7.3.2.3 Acid Production 181
7.3.2.4 Microbial Oxidation/Reduction of Iron 181
7.4 Diagnosis 182
7.5 Control and Prevention 182
7.5.1 Coatings 183
7.5.2 Biocidal Treatments 183
7.5.3 Cathodic Protection 183
7.5.4 Deoxygenation 184
7.5.5 Flow 185
7.6 Commentary 185
References 186
8 Marine Biofouling 191
Simone Duerr, Robert Edyvean, and Eleanor Ramsden-Lister
8.1 What Is Biofouling? 191
8.2 Development of Biofouling on New Artificial Surfaces 192
8.2.1 Macromolecules (Conditioning Film) 192
8.2.2 Bacteria 192
8.2.3 Diatoms, Protozoans 195
8.2.4 Larvae and Spores 195
8.3 Established Biofouling Communities 197
8.4 The Effect of Biofouling on the Corrosion of Metals in the Marine Environment 199
8.5 Past and Present Antifouling Strategies on Metals Used in the Marine Environment 201
8.5.1 Tributyltin (TBT) Self-Polishing Copolymer Paints 201
8.5.2 Controlled Depletion Polymers (CDPs)/Self-Polishing Containing Biocides and Booster Biocides 201
8.5.3 Foul Release Coatings 202
8.5.4 Electrochemical Control 203
8.5.5 Electrochlorination 204
8.5.6 Ultrasonics for Antifouling 204
8.5.7 Mechanical Cleaning and Prevention 205
8.5.8 Enzymes 205
8.5.9 Biomimetics and Bioinspiration 206
8.6 Conclusion 206
References 207
9 Environmentally Enhanced Fatigue 215
James Burns
9.1 Introduction 215
9.2 Precorrosion Effects 218
9.3 Loading Environment Effects 221
9.4 Crack Initiation 221
9.5 Crack Propagation 223
9.5.1 Aluminum 223
9.5.2 Titanium 225
9.5.3 Steel 226
9.6 Effect of Corrosion Mitigation Techniques on Fatigue 230
9.7 Conclusion 231
References 232
10 Effects of Stress - Environment Assisted Cracking 239
John R. Scully
10.1 Introduction 239
10.2 High-Strength Steels 242
10.2.1 Physical Metallurgy 242
10.2.2 General Susceptibility Trends 243
10.2.3 Dependence on Applied Potential 245
10.3 Stainless Steels 249
10.3.1 Physical Metallurgy 249
10.3.2 General Susceptibility Trends 251
10.3.3 Dependence on Applied Potential 254
10.4 Precipitation Hardened Stainless Steels 254
10.4.1 Physical and Mechanical Metallurgy of Precipitation Hardened Stainless Steel 254
10.4.2 General Susceptibility Trends 255
10.4.3 Effect of Applied Potential 260
10.5 Titanium Alloys 261
10.5.1 Physical Metallurgy 261
10.5.2 General Susceptibility Trends 263
10.5.3 Effect of Potential 264
10.6 High-Strength Aluminum Alloys 266
10.6.1 Physical Metallurgy 266
10.6.2 General Susceptibility Trends 268
10.6.3 Effects of Potential 271
10.7 Nickel Base Alloys 272
10.7.1 Physical Metallurgy 272
10.7.2 General Susceptibility Trends 273
10.7.2.1 Effects of Applied Potential 277
10.8 Copper, Copper Alloys, and Aluminum Bronze Alloys 277
10.8.1 Physical Metallurgy 277
10.8.2 General Susceptibility Trends 278
10.9 Magnesium Alloys 279
10.9.1 Physical Metallurgy 279
10.9.2 General Susceptibility Trends and Effects of Potential 279
References 280
11 Cathodic Delamination 291
Thomas Ramotowski
11.1 Introduction 291
11.2 Mechanisms for Cathodic Delamination 293
11.3 Cathodic Delamination Mitigation Strategies 296
References 298
12 High Temperature Corrosion in Marine Environments 301
David A. Shifler
12.1 Introduction 301
12.1.1 High Temperature Corrosion and Degradation Processes 301
12.2 Boilers 302
12.3 Diesel Engines 306
12.4 Gas Turbine Engines 309
12.4.1 High-Temperature Coatings 317
12.4.2 Factors Affecting Operational Life 319
12.5 Incinerators 319
12.6 Fuels 324
References 328
13 Design for Corrosion Control in Marine Environments 335
David A. Shifler
13.1 Introduction 335
13.2 General Design Approach 336
13.3 Corrosion Control Design Choices for Marine Structures 339
13.3.1 Materials 339
13.3.2 Organic Coatings 339
13.3.3 Metallic Coatings 340
13.3.4 Cathodic Protection 341
13.3.5 Inhibitors 341
13.4 Structural Designs that Minimize Corrosion 342
13.5 Inspection to Evaluate Conformance to Design, Repair Criteria 345
13.6 Ship Design in Marine Environments 346
13.6.1 Military Ships and Assets 346
13.6.2 Commercial Ship Design 348
13.6.3 Cruise Ship Design 349
13.7 Offshore Structural Design in Marine Environments 350
13.8 Summary 351
References 351
Further Reading 353
Ships 353
Offshore Structures 354
14 Modeling of Marine Corrosion Processes 355
Jason S. Lee, David G. Enos, Roger Francis, Sean Brossia, and David A. Shifler
14.1 Introduction 355
14.2 Computational Approaches 355
14.3 Assumptions in Modeling 356
14.4 Galvanic Corrosion 357
14.5 Localized Corrosion 359
14.5.1 Crevices 360
14.5.2 Cracks 363
14.5.3 Pitting 363
14.5.4 Intergranular Corrosion 364
14.6 General Corrosion 364
14.7 Atmospheric Corrosion Models 365
14.7.1 Holistic Atmospheric Corrosion Model 365
14.7.2 GILDES Model 366
14.8 Cathodic Protection 367
14.9 Recent Modeling Advances 369
14.9.1 Future Directions of DFT 370
14.10 Limitations and Future Needs 371
14.11 Summary 372
References 373
15 Marine Corrosion Testing 379
David A. Shifler and David G. Enos
15.1 Introduction 379
15.2 Corrosion Test Planning 379
15.3 Types of Corrosion Testing 381
15.3.1 Laboratory Testing 381
15.3.2 Salt Spray/Salt Fog Testing 383
15.3.2.1 Types of Salt Spray Environments 384
15.3.2.2 Limitations of Salt Spray Testing 385
15.3.3 Mixed Flowing Gas (MFG) Exposure Testing 386
15.3.4 Immersion Testing 389
15.3.5 Electrochemical Testing 393
15.3.5.1 Direct Current Electrochemical Methods 393
15.3.5.2 Nondestructive Electrochemical Methods 396
15.3.6 High Velocity Flow Testing 397
15.3.7 Environmental Cracking Test Methods 398
15.3.8 High Temperature Testing - Burner-Rigs 401
15.3.9 Molten Salt Tests 401
15.3.9.1 Thermogravimetric Analysis 402
15.3.10 Microbiological Tests 403
15.4 Field Evaluation 405
15.4.1 In-Service Testing 408
15.4.1.1 Simulated Service Testing 410
15.4.2 Standards for Seawater Testing 410
References 412
16 Nonmetallic Materials in Marine Service 421
Wayne Tucker
16.1 Introduction 421
16.2 Selection and Application 422
16.2.1 Material Definitions 422
16.2.2 Resistance to Environmental Factors 423
16.2.3 Mechanical and Physical Properties 423
16.3 Wood 424
16.3.1 Introduction 424
16.3.2 Degrading Factors 424
16.4 Plywood and Other Wood Composites 427
16.5 Concrete 428
16.5.1 Introduction 428
16.5.2 Marine Environmental Effects 429
16.5.3 Protection of Reinforced Concrete 430
16.5.4 Epoxy Coated Rebars (ECR) 431
16.5.5 Fiber Reinforced Concrete (FRC) 432
16.5.6 Repairs 432
16.6 Polymers 433
16.6.1 Fiber Reinforced Plastics (FRPs) 433
16.6.2 Environmental Effects 435
16.6.3 Fatigue of Marine Composites 436
16.6.4 Microbial Degradation 436
16.6.5 Ceramics and Glass 436
References 437
17 Electronics and Electrical Equipment in a Marine Environment 441
James A. Ellor
17.1 Introduction 441
17.2 Primary Corrosion Phenomena in a Marine Environment 442
17.2.1 Types of Corrosion 444
17.2.1.1 Galvanic Corrosion 444
17.2.1.2 Electrolytic Corrosion 445
17.2.1.3 Electrochemical Migration 445
17.3 Protection from the Environment 446
17.3.1 Conformal Coatings 446
17.3.2 Enclosures 447
17.3.3 Hermetic Seals 448
17.3.4 Dehumidification 448
17.3.5 Corrosion Inhibitors 449
17.3.6 Water-Displacing Compounds 449
17.4 Corrosion Testing for Electronics in a Marine Environment 449
17.5 Conclusions 450
References 451
18 Structural Alloys in Marine Service 453
David A. Shifler
18.1 Cast Irons 453
18.1.1 Cast Iron Metallurgy 454
18.1.2 Cast Iron Corrosion Behavior 457
18.2 Carbon Steels 458
18.2.1 Carbon Steel Chemistries 460
18.2.1.1 Effects of Alloying Additions 460
18.2.2 Surface Oxides/Corrosion Products 463
18.2.3 Heat Treating 464
18.2.4 Marine Steels 468
18.3 Stainless Steels 473
18.3.1 Stainless Steel Types 474
18.3.1.1 Austenitic Stainless Steels 474
18.3.1.2 Ferritic Stainless Steels 475
18.3.1.3 Martensitic Stainless Steels 478
18.3.1.4 Duplex Stainless Steels 478
18.3.1.5 Precipitation-Hardening Stainless Steels 479
18.3.2 Corrosion Behavior of Stainless Steels 479
18.3.3 Marine Uses of Stainless Steels 481
18.4 Nickel and Nickel Alloys 481
18.4.1 Corrosion Resistant Nickel and Nickel Alloys 483
18.4.2 High-temperature Nickel Alloys - Superalloys 486
18.5 Aluminum and Aluminum Alloys 490
18.5.1 Aluminum Alloy Familites 490
18.5.2 Heat Treatment of Aluminum Alloys 494
18.5.3 Corrosion Behavior of Aluminum Alloys 496
18.6 Copper and Copper Alloys 497
18.6.1 General Corrosion and Mechanical Properties 497
18.6.2 Bronze Alloys 498
18.6.3 Brasses 502
18.6.4 Copper-Nickel Alloys 503
18.7 Titanium and Titanium Alloys 506
18.7.1 Chemistry and Metallurgy of Titanium Alloys 507
18.7.2 General Corrosion Behavior 510
18.8 Factors Affecting Alloy Corrosion Behavior in Marine Service 510
18.8.1 Surface Properties and Processes 510
18.8.1.1 Passivity 510
18.8.2 Material Bulk Properties 513
18.8.3 Joining Effects on Materials 514
18.8.4 Cathodic Protection 518
References 518
Additional Reading and References 525
19 Marine Coatings 527
Charles G. Munger, Louis Vincent, and David A. Shifler
19.1 Introduction 527
19.2 Characteristics of a Ideal Marine Coating 528
19.3 Coating Degradation and Failures 532
19.4 Surface Preparation 532
19.5 Coating Inspection, Selection, and Application for Controlling Corrosion 536
19.6 Coatings for Marine Service 539
19.6.1 Metallized Coatings 539
19.6.1.1 Metal-Containing Primers 542
19.6.1.2 Cadmium Plating 543
19.6.1.3 Cadmium Options 543
19.6.2 Organic Coatings 544
19.6.2.1 Coating Thickness Measurements 544
19.7 Types of Coatings for Marine Vessels 545
19.7.1 Conversion Coatings 547
19.7.1.1 Hexavalent Chromate Conversion Coatings 547
19.7.1.2 Hexavalent Chromate Alternatives 547
19.7.1.3 Phosphate Coatings 548
19.7.2 Organic Coatings and Nanocomposites 548
19.7.3 Shop Primers 549
19.7.4 Universal Primers 550
19.7.5 Zinc-Rich Coatings 550
19.7.6 Organic Primers 551
19.7.7 Tie-Coats 552
19.7.8 Abrasion Resistant Coatings 552
19.7.9 Cargo Tank Linings 553
19.7.9.1 Tank Lining Chemical Resistance 554
19.7.10 Bilge Coatings 554
19.7.11 Ballast Tank Linings 555
19.7.12 Cofferdam and Void Coatings 558
19.7.13 Potable Water Tank Linings 558
19.7.14 Cosmetic Finishes - Topside Area and Interior Living and Working Spaces 559
19.7.15 Deck Coatings - Including Heli-Deck Surfaces 560
19.7.16 Hull Coatings - Freeboard Area 562
19.7.17 Maintenance Painting Programs 563
19.8 Offshore Structures 563
References 565
20 Biofouling Control 573
David A. Shifler
20.1 The Nature of Biofouling 573
20.2 Fouling Effects on Ships 574
20.2.1 Control of Biofouling 576
20.2.1.1 Biocidal Antifoulant Coatings 576
20.3 Non-biocidal Antifoulant Methods and Coatings 579
20.4 Maintenance, Monitoring, and Testing 582
References 587
21 Cathodic Protection 593
James A. Ellor, David A. Shifler, and Robert A. Bardsley
21.1 Theory 593
21.2 Reference Cells 596
21.3 Methods of Applying Cathodic Protection 597
21.3.1 Cathodic Protection Using Sacrificial Anodes 597
21.3.2 Impressed Current Cathodic Protection (ICCP) 600
21.3.2.1 Impressed Current Anodes Materials 601
21.3.2.2 Sacrificial Anodes 602
21.3.2.3 Impressed Current Cathodic Protection 604
21.4 Design Basics 604
21.4.1 Calcareous Deposits and Impacts on Protection Criteria 605
21.4.2 Polarization Characteristics Over Time 607
21.4.3 Design Using Physical Scale Modeling 608
21.4.4 Computer-Assisted Design 609
21.4.5 Protective (Dielectric) Shields 609
21.4.6 Protection Current Requirements 610
21.4.7 Polarization Potential Criteria of Protection 611
21.4.8 Automated Control Systems 611
21.5 Cathodic Protection in Marine Service 612
21.5.1 Small Boats and Large Commercial and Marine Vessels 612
21.5.2 Offshore Structures 615
21.5.3 Bridges, Wharves, and Jetties 617
21.5.4 Marine Pipelines 621
21.6 Concerns with the Use of Cathodic Protection 623
21.6.1 Corrosion/Cathodic Protection Monitoring 624
References 626
22 Corrosion Monitoring in Seawater 633
Sean Brossia
22.1 Introduction 633
22.2 Electrochemical Methods 634
22.2.1 Linear Polarization Resistance 634
22.2.2 Potential Measurements 636
22.2.3 Electrochemical Impedance Spectroscopy 637
22.2.4 Electrochemical Noise 641
22.2.5 Electrochemical Frequency Modulation 641
22.2.6 Wirebeam/Multielectrode Array Methods 641
22.3 Non-Electrochemical Methods 644
22.4 Challenges 647
22.5 Applications 648
22.6 Summary and Conclusions 649
References 650
23 Marine Fasteners 653
David A. Shifler
23.1 Introduction 653
23.2 Failure Modes 654
23.3 General Fastener Design 655
23.4 Fastener Materials Selection 656
23.4.1 Standards and Specifications 656
23.4.2 Low-Alloy Steels 659
23.4.3 Stainless Steels 659
23.4.4 Aluminum Alloys 659
23.4.5 Copper Alloys 660
23.4.6 Nickel Alloys 660
23.4.7 Titanium Alloys 660
23.5 Fastener Behavior Above the Waterline 661
23.6 Fastener Behavior in Submerged, Below the Waterline 661
23.7 Corrosion Protection for Fasteners 662
References 663
Further Reading 666
24 Marine and Offshore Piping Systems 667
David A. Shifler
24.1 Piping Systems 667
24.1.1 Bilge System 667
24.1.2 Ballast System 667
24.1.3 Firefighting Systems 668
24.1.4 Drainage Systems 668
24.1.5 Fresh-Water Systems 668
24.1.6 Fuel and Flammable Liquid Piping 668
24.1.7 Ventilation Systems - Ships 669
24.1.8 Hydrocarbon Piping (Oil and Gas) 669
24.1.9 Vent System - Offshore 669
24.1.10 Flare System 669
24.1.11 Firewater Utility Piping 669
24.1.12 Risers 670
24.1.13 Subsea Piping 670
24.2 Piping System Design 671
24.3 Materials Selection 672
24.4 Failure Modes of Piping Systems 674
24.4.1 Uniform Corrosion 674
24.4.2 Pitting and Crevice Corrosion 675
24.4.3 Galvanic Corrosion 677
24.4.4 Abrasion 681
24.4.5 Erosion and Erosion Corrosion 681
24.4.6 Variable Temperature Swings 684
24.4.7 Wear and Impact 684
24.4.8 Fatigue 685
24.4.9 Water Hammer 685
24.5 Corrosion Control Methods 686
References 686
Further Reading 689
25 Corrosion Control and Preservation of Historic Marine Artifacts 691
David A. Shifler
25.1 Introduction 691
25.2 Basic Conservation Procedures 694
25.2.1 Laboratory Conservation Procedures 695
25.3 Degradation, Corrosion, and Conservation of Marine Artifacts 695
25.3.1 Corrosion and Conservation of Ferrous Alloys 696
25.3.2 Corrosion and Conservation of Other Metals and Alloys 700
25.3.2.1 Corrosion and Conservation of Copper Artifacts 701
25.3.2.2 Corrosion and Conservation of Silver Artifacts 701
25.3.3 Corrosion and Conservation of Lead, Tin, Pewter 702
References 703
Further Reading 705
Marine Archaeology Conservation 705
Index 707
Preface xxi
1 The Nature of Marine Environments 1
Bopinder Phull
1.1 Introduction 1
1.2 Seawater Chemistry 2
1.2.1 Chemical Composition of Seawater 2
1.2.1.1 Role of Ions 3
1.2.1.2 Dissolved Gases 5
1.2.1.3 Scale-Forming Compounds 8
1.2.1.4 Suspended Matter 9
1.2.1.5 pH 10
1.2.1.6 Chlorination 10
1.3 Physical 11
1.3.1 Temperature 11
1.3.2 Electrolytic Resistivity of Seawater 13
1.3.3 Velocity Effects 14
1.3.4 Effects of Depth 17
1.3.5 Splash and Tidal Zones 18
1.3.6 Bottom Sediments 20
1.4 Biological Effects 21
1.4.1 Microorganisms, Biofilms, and Biofouling 21
1.5 Testing 24
References 25
2 Electrochemistry and Forms of Corrosion 29
David A. Shifler
2.1 Introduction 29
2.2 Corrosion Thermodynamics 30
2.3 Corrosion Kinetics 30
2.4 Passivity 33
2.5 Corrosion Mechanistic Modes 34
2.5.1 Stray Current Corrosion 35
2.5.2 Galvanic Corrosion 35
2.5.3 Crevice Corrosion 37
2.5.4 Pitting 38
2.5.5 Intergranular Corrosion 38
2.5.6 Microbiological-Influenced Corrosion 40
2.5.7 Dealloying 41
2.5.8 Flow-Influenced Corrosion 42
2.6 Environmentally Induced Cracking 43
2.6.1 Stress Corrosion Cracking 43
2.6.2 Fatigue and Corrosion Fatigue 44
2.6.3 High-Temperature Corrosion 45
2.7 Factors Influencing Corrosion 46
References 47
3 Atmospheric Corrosion in Marine Environments 49
David G. Enos
3.1 Introduction 49
3.2 Understanding the Environment (Important Factors) 49
3.2.1 Humidity 51
3.2.2 Temperature 53
3.2.3 Solid and Liquid Contaminants (Salt Particulates, Seawater Aerosol, Dust, etc.) 53
3.2.4 Gaseous Contaminants 55
3.2.5 Physical Environment 55
3.3 Basic Electrochemistry of Atmospheric Corrosion 57
3.4 Corrosion Testing 59
3.4.1 Accelerated Testing 59
3.4.2 Long-Term Field Testing 59
3.5 Modeling 59
3.6 Summary 60
Acknowledgment 60
References 60
4 Localized Corrosion 63
David A. Shifler
4.1 Introduction 63
4.2 Pitting 63
4.2.1 Cast Irons 65
4.2.2 Carbon Steels 66
4.2.3 Stainless Steels 66
4.2.4 Nickel Alloys 69
4.2.5 Aluminum Alloys 72
4.2.6 Copper Alloys 73
4.2.7 Titanium Alloys 77
4.3 Crevice Corrosion 78
4.3.1 Cast Irons 81
4.3.2 Carbon Steels 82
4.3.3 Stainless Steels 82
4.3.4 Nickel Alloys 86
4.3.5 Aluminum Alloys 89
4.3.6 Copper Alloys 91
4.3.7 Titanium Alloys 92
4.4 Intergranular Corrosion 93
4.4.1 Cast Irons 94
4.4.2 Carbon Steels 94
4.4.3 Stainless Steels 95
4.4.4 Nickel Alloys 97
4.4.5 Aluminum Alloys 98
4.4.6 Copper Alloys 101
4.4.7 Titanium Alloys 102
4.5 Dealloying 102
4.5.1 Cast Irons 103
4.5.2 Carbon Steels 104
4.5.3 Stainless Steels 104
4.5.4 Nickel Alloys 104
4.5.5 Aluminum Alloys 104
4.5.6 Copper Alloys 105
4.5.7 Titanium Alloys 108
References 108
Further Reading 121
5 Galvanic Corrosion 123
Roger Francis
5.1 Introduction 123
5.2 Conditions Necessary for Galvanic Corrosion 124
5.3 Factors Affecting Galvanic Corrosion 125
5.3.1 Electrode Potential 125
5.3.2 Potential Variability 126
5.3.3 Electrode Efficiency 127
5.3.4 Electrolyte 129
5.3.5 Area Ratio 129
5.3.6 Aeration and Flow Rate 132
5.3.7 Metallurgical Condition and Composition 133
5.3.8 Stifling Effects 134
5.4 Alloy Groups 135
5.4.1 Group 1 Alloys 136
5.4.2 Group 2 Alloys 136
5.4.3 Group 3 Alloys 138
5.4.4 Group 4 Alloys 140
5.5 Marine Atmospheres 142
5.5.1 Factors Affecting Atmospheric Corrosion 142
5.5.2 Materials Compatibility 143
5.5.3 Atmospheric Variability 145
5.5.4 Tropical Atmospheres 145
5.6 Methods of Prevention 147
5.6.1 Materials 147
5.6.2 Insulation and Separation 147
5.6.3 Painting/Coatings 148
5.6.4 Cathodic Protection (CP) 149
5.6.5 Inhibitors 150
5.7 Design 150
References 151
6 The Effects of Turbulent Flow on Corrosion in Seawater 155
K. Daniel Efird
6.1 Introduction 155
6.1.1 Evaluating Flow Effects 155
6.2 The Basics of Turbulent Flow and Corrosion 156
6.2.1 The Nature of Turbulent Flow 156
6.2.2 Disturbed Flow 159
6.3 Erosion-Corrosion 159
6.3.1 Cavitation Corrosion 160
6.4 Flow Effects for Specific Materials 161
6.4.1 Carbon and Low Alloy Steels and Cast Irons 161
6.4.2 Copper Alloys 162
6.4.3 Passive Alloys 163
6.5 Flow Effects in Specific Facility Applications 164
6.A Wall Shear Stress and Mass Transfer Coefficient Defined 167
6.A.1 Wall Shear Stress 167
6.A.2 Mass Transfer Coefficient 168
6.A.3 Interrelationship of Mass Transfer Coefficient and Wall Shear Stress 168
6.B University of Tulsa Erosion Model 169
References 169
7 Biological Fouling and Corrosion Processes 173
Brenda J. Little and Jason S. Lee
7.1 Introduction 173
7.2 Development of Marine Fouling 174
7.2.1 Microfouling 174
7.2.2 Macrofouling 176
7.3 Influence of Marine Fouling on Corrosion 177
7.3.1 Corrosion Mechanisms Related to Generic Properties of Fouling Organisms 177
7.3.1.1 Oxygen Concentration Cells 177
7.3.1.2 Ennoblement 178
7.3.1.3 Galvanic Corrosion 178
7.3.2 Reactions Attributed to Specific Groups of Bacteria and Archaea 179
7.3.2.1 Sulfate Reduction 179
7.3.2.2 Sulfide Reactions with Specific Metals 179
7.3.2.3 Acid Production 181
7.3.2.4 Microbial Oxidation/Reduction of Iron 181
7.4 Diagnosis 182
7.5 Control and Prevention 182
7.5.1 Coatings 183
7.5.2 Biocidal Treatments 183
7.5.3 Cathodic Protection 183
7.5.4 Deoxygenation 184
7.5.5 Flow 185
7.6 Commentary 185
References 186
8 Marine Biofouling 191
Simone Duerr, Robert Edyvean, and Eleanor Ramsden-Lister
8.1 What Is Biofouling? 191
8.2 Development of Biofouling on New Artificial Surfaces 192
8.2.1 Macromolecules (Conditioning Film) 192
8.2.2 Bacteria 192
8.2.3 Diatoms, Protozoans 195
8.2.4 Larvae and Spores 195
8.3 Established Biofouling Communities 197
8.4 The Effect of Biofouling on the Corrosion of Metals in the Marine Environment 199
8.5 Past and Present Antifouling Strategies on Metals Used in the Marine Environment 201
8.5.1 Tributyltin (TBT) Self-Polishing Copolymer Paints 201
8.5.2 Controlled Depletion Polymers (CDPs)/Self-Polishing Containing Biocides and Booster Biocides 201
8.5.3 Foul Release Coatings 202
8.5.4 Electrochemical Control 203
8.5.5 Electrochlorination 204
8.5.6 Ultrasonics for Antifouling 204
8.5.7 Mechanical Cleaning and Prevention 205
8.5.8 Enzymes 205
8.5.9 Biomimetics and Bioinspiration 206
8.6 Conclusion 206
References 207
9 Environmentally Enhanced Fatigue 215
James Burns
9.1 Introduction 215
9.2 Precorrosion Effects 218
9.3 Loading Environment Effects 221
9.4 Crack Initiation 221
9.5 Crack Propagation 223
9.5.1 Aluminum 223
9.5.2 Titanium 225
9.5.3 Steel 226
9.6 Effect of Corrosion Mitigation Techniques on Fatigue 230
9.7 Conclusion 231
References 232
10 Effects of Stress - Environment Assisted Cracking 239
John R. Scully
10.1 Introduction 239
10.2 High-Strength Steels 242
10.2.1 Physical Metallurgy 242
10.2.2 General Susceptibility Trends 243
10.2.3 Dependence on Applied Potential 245
10.3 Stainless Steels 249
10.3.1 Physical Metallurgy 249
10.3.2 General Susceptibility Trends 251
10.3.3 Dependence on Applied Potential 254
10.4 Precipitation Hardened Stainless Steels 254
10.4.1 Physical and Mechanical Metallurgy of Precipitation Hardened Stainless Steel 254
10.4.2 General Susceptibility Trends 255
10.4.3 Effect of Applied Potential 260
10.5 Titanium Alloys 261
10.5.1 Physical Metallurgy 261
10.5.2 General Susceptibility Trends 263
10.5.3 Effect of Potential 264
10.6 High-Strength Aluminum Alloys 266
10.6.1 Physical Metallurgy 266
10.6.2 General Susceptibility Trends 268
10.6.3 Effects of Potential 271
10.7 Nickel Base Alloys 272
10.7.1 Physical Metallurgy 272
10.7.2 General Susceptibility Trends 273
10.7.2.1 Effects of Applied Potential 277
10.8 Copper, Copper Alloys, and Aluminum Bronze Alloys 277
10.8.1 Physical Metallurgy 277
10.8.2 General Susceptibility Trends 278
10.9 Magnesium Alloys 279
10.9.1 Physical Metallurgy 279
10.9.2 General Susceptibility Trends and Effects of Potential 279
References 280
11 Cathodic Delamination 291
Thomas Ramotowski
11.1 Introduction 291
11.2 Mechanisms for Cathodic Delamination 293
11.3 Cathodic Delamination Mitigation Strategies 296
References 298
12 High Temperature Corrosion in Marine Environments 301
David A. Shifler
12.1 Introduction 301
12.1.1 High Temperature Corrosion and Degradation Processes 301
12.2 Boilers 302
12.3 Diesel Engines 306
12.4 Gas Turbine Engines 309
12.4.1 High-Temperature Coatings 317
12.4.2 Factors Affecting Operational Life 319
12.5 Incinerators 319
12.6 Fuels 324
References 328
13 Design for Corrosion Control in Marine Environments 335
David A. Shifler
13.1 Introduction 335
13.2 General Design Approach 336
13.3 Corrosion Control Design Choices for Marine Structures 339
13.3.1 Materials 339
13.3.2 Organic Coatings 339
13.3.3 Metallic Coatings 340
13.3.4 Cathodic Protection 341
13.3.5 Inhibitors 341
13.4 Structural Designs that Minimize Corrosion 342
13.5 Inspection to Evaluate Conformance to Design, Repair Criteria 345
13.6 Ship Design in Marine Environments 346
13.6.1 Military Ships and Assets 346
13.6.2 Commercial Ship Design 348
13.6.3 Cruise Ship Design 349
13.7 Offshore Structural Design in Marine Environments 350
13.8 Summary 351
References 351
Further Reading 353
Ships 353
Offshore Structures 354
14 Modeling of Marine Corrosion Processes 355
Jason S. Lee, David G. Enos, Roger Francis, Sean Brossia, and David A. Shifler
14.1 Introduction 355
14.2 Computational Approaches 355
14.3 Assumptions in Modeling 356
14.4 Galvanic Corrosion 357
14.5 Localized Corrosion 359
14.5.1 Crevices 360
14.5.2 Cracks 363
14.5.3 Pitting 363
14.5.4 Intergranular Corrosion 364
14.6 General Corrosion 364
14.7 Atmospheric Corrosion Models 365
14.7.1 Holistic Atmospheric Corrosion Model 365
14.7.2 GILDES Model 366
14.8 Cathodic Protection 367
14.9 Recent Modeling Advances 369
14.9.1 Future Directions of DFT 370
14.10 Limitations and Future Needs 371
14.11 Summary 372
References 373
15 Marine Corrosion Testing 379
David A. Shifler and David G. Enos
15.1 Introduction 379
15.2 Corrosion Test Planning 379
15.3 Types of Corrosion Testing 381
15.3.1 Laboratory Testing 381
15.3.2 Salt Spray/Salt Fog Testing 383
15.3.2.1 Types of Salt Spray Environments 384
15.3.2.2 Limitations of Salt Spray Testing 385
15.3.3 Mixed Flowing Gas (MFG) Exposure Testing 386
15.3.4 Immersion Testing 389
15.3.5 Electrochemical Testing 393
15.3.5.1 Direct Current Electrochemical Methods 393
15.3.5.2 Nondestructive Electrochemical Methods 396
15.3.6 High Velocity Flow Testing 397
15.3.7 Environmental Cracking Test Methods 398
15.3.8 High Temperature Testing - Burner-Rigs 401
15.3.9 Molten Salt Tests 401
15.3.9.1 Thermogravimetric Analysis 402
15.3.10 Microbiological Tests 403
15.4 Field Evaluation 405
15.4.1 In-Service Testing 408
15.4.1.1 Simulated Service Testing 410
15.4.2 Standards for Seawater Testing 410
References 412
16 Nonmetallic Materials in Marine Service 421
Wayne Tucker
16.1 Introduction 421
16.2 Selection and Application 422
16.2.1 Material Definitions 422
16.2.2 Resistance to Environmental Factors 423
16.2.3 Mechanical and Physical Properties 423
16.3 Wood 424
16.3.1 Introduction 424
16.3.2 Degrading Factors 424
16.4 Plywood and Other Wood Composites 427
16.5 Concrete 428
16.5.1 Introduction 428
16.5.2 Marine Environmental Effects 429
16.5.3 Protection of Reinforced Concrete 430
16.5.4 Epoxy Coated Rebars (ECR) 431
16.5.5 Fiber Reinforced Concrete (FRC) 432
16.5.6 Repairs 432
16.6 Polymers 433
16.6.1 Fiber Reinforced Plastics (FRPs) 433
16.6.2 Environmental Effects 435
16.6.3 Fatigue of Marine Composites 436
16.6.4 Microbial Degradation 436
16.6.5 Ceramics and Glass 436
References 437
17 Electronics and Electrical Equipment in a Marine Environment 441
James A. Ellor
17.1 Introduction 441
17.2 Primary Corrosion Phenomena in a Marine Environment 442
17.2.1 Types of Corrosion 444
17.2.1.1 Galvanic Corrosion 444
17.2.1.2 Electrolytic Corrosion 445
17.2.1.3 Electrochemical Migration 445
17.3 Protection from the Environment 446
17.3.1 Conformal Coatings 446
17.3.2 Enclosures 447
17.3.3 Hermetic Seals 448
17.3.4 Dehumidification 448
17.3.5 Corrosion Inhibitors 449
17.3.6 Water-Displacing Compounds 449
17.4 Corrosion Testing for Electronics in a Marine Environment 449
17.5 Conclusions 450
References 451
18 Structural Alloys in Marine Service 453
David A. Shifler
18.1 Cast Irons 453
18.1.1 Cast Iron Metallurgy 454
18.1.2 Cast Iron Corrosion Behavior 457
18.2 Carbon Steels 458
18.2.1 Carbon Steel Chemistries 460
18.2.1.1 Effects of Alloying Additions 460
18.2.2 Surface Oxides/Corrosion Products 463
18.2.3 Heat Treating 464
18.2.4 Marine Steels 468
18.3 Stainless Steels 473
18.3.1 Stainless Steel Types 474
18.3.1.1 Austenitic Stainless Steels 474
18.3.1.2 Ferritic Stainless Steels 475
18.3.1.3 Martensitic Stainless Steels 478
18.3.1.4 Duplex Stainless Steels 478
18.3.1.5 Precipitation-Hardening Stainless Steels 479
18.3.2 Corrosion Behavior of Stainless Steels 479
18.3.3 Marine Uses of Stainless Steels 481
18.4 Nickel and Nickel Alloys 481
18.4.1 Corrosion Resistant Nickel and Nickel Alloys 483
18.4.2 High-temperature Nickel Alloys - Superalloys 486
18.5 Aluminum and Aluminum Alloys 490
18.5.1 Aluminum Alloy Familites 490
18.5.2 Heat Treatment of Aluminum Alloys 494
18.5.3 Corrosion Behavior of Aluminum Alloys 496
18.6 Copper and Copper Alloys 497
18.6.1 General Corrosion and Mechanical Properties 497
18.6.2 Bronze Alloys 498
18.6.3 Brasses 502
18.6.4 Copper-Nickel Alloys 503
18.7 Titanium and Titanium Alloys 506
18.7.1 Chemistry and Metallurgy of Titanium Alloys 507
18.7.2 General Corrosion Behavior 510
18.8 Factors Affecting Alloy Corrosion Behavior in Marine Service 510
18.8.1 Surface Properties and Processes 510
18.8.1.1 Passivity 510
18.8.2 Material Bulk Properties 513
18.8.3 Joining Effects on Materials 514
18.8.4 Cathodic Protection 518
References 518
Additional Reading and References 525
19 Marine Coatings 527
Charles G. Munger, Louis Vincent, and David A. Shifler
19.1 Introduction 527
19.2 Characteristics of a Ideal Marine Coating 528
19.3 Coating Degradation and Failures 532
19.4 Surface Preparation 532
19.5 Coating Inspection, Selection, and Application for Controlling Corrosion 536
19.6 Coatings for Marine Service 539
19.6.1 Metallized Coatings 539
19.6.1.1 Metal-Containing Primers 542
19.6.1.2 Cadmium Plating 543
19.6.1.3 Cadmium Options 543
19.6.2 Organic Coatings 544
19.6.2.1 Coating Thickness Measurements 544
19.7 Types of Coatings for Marine Vessels 545
19.7.1 Conversion Coatings 547
19.7.1.1 Hexavalent Chromate Conversion Coatings 547
19.7.1.2 Hexavalent Chromate Alternatives 547
19.7.1.3 Phosphate Coatings 548
19.7.2 Organic Coatings and Nanocomposites 548
19.7.3 Shop Primers 549
19.7.4 Universal Primers 550
19.7.5 Zinc-Rich Coatings 550
19.7.6 Organic Primers 551
19.7.7 Tie-Coats 552
19.7.8 Abrasion Resistant Coatings 552
19.7.9 Cargo Tank Linings 553
19.7.9.1 Tank Lining Chemical Resistance 554
19.7.10 Bilge Coatings 554
19.7.11 Ballast Tank Linings 555
19.7.12 Cofferdam and Void Coatings 558
19.7.13 Potable Water Tank Linings 558
19.7.14 Cosmetic Finishes - Topside Area and Interior Living and Working Spaces 559
19.7.15 Deck Coatings - Including Heli-Deck Surfaces 560
19.7.16 Hull Coatings - Freeboard Area 562
19.7.17 Maintenance Painting Programs 563
19.8 Offshore Structures 563
References 565
20 Biofouling Control 573
David A. Shifler
20.1 The Nature of Biofouling 573
20.2 Fouling Effects on Ships 574
20.2.1 Control of Biofouling 576
20.2.1.1 Biocidal Antifoulant Coatings 576
20.3 Non-biocidal Antifoulant Methods and Coatings 579
20.4 Maintenance, Monitoring, and Testing 582
References 587
21 Cathodic Protection 593
James A. Ellor, David A. Shifler, and Robert A. Bardsley
21.1 Theory 593
21.2 Reference Cells 596
21.3 Methods of Applying Cathodic Protection 597
21.3.1 Cathodic Protection Using Sacrificial Anodes 597
21.3.2 Impressed Current Cathodic Protection (ICCP) 600
21.3.2.1 Impressed Current Anodes Materials 601
21.3.2.2 Sacrificial Anodes 602
21.3.2.3 Impressed Current Cathodic Protection 604
21.4 Design Basics 604
21.4.1 Calcareous Deposits and Impacts on Protection Criteria 605
21.4.2 Polarization Characteristics Over Time 607
21.4.3 Design Using Physical Scale Modeling 608
21.4.4 Computer-Assisted Design 609
21.4.5 Protective (Dielectric) Shields 609
21.4.6 Protection Current Requirements 610
21.4.7 Polarization Potential Criteria of Protection 611
21.4.8 Automated Control Systems 611
21.5 Cathodic Protection in Marine Service 612
21.5.1 Small Boats and Large Commercial and Marine Vessels 612
21.5.2 Offshore Structures 615
21.5.3 Bridges, Wharves, and Jetties 617
21.5.4 Marine Pipelines 621
21.6 Concerns with the Use of Cathodic Protection 623
21.6.1 Corrosion/Cathodic Protection Monitoring 624
References 626
22 Corrosion Monitoring in Seawater 633
Sean Brossia
22.1 Introduction 633
22.2 Electrochemical Methods 634
22.2.1 Linear Polarization Resistance 634
22.2.2 Potential Measurements 636
22.2.3 Electrochemical Impedance Spectroscopy 637
22.2.4 Electrochemical Noise 641
22.2.5 Electrochemical Frequency Modulation 641
22.2.6 Wirebeam/Multielectrode Array Methods 641
22.3 Non-Electrochemical Methods 644
22.4 Challenges 647
22.5 Applications 648
22.6 Summary and Conclusions 649
References 650
23 Marine Fasteners 653
David A. Shifler
23.1 Introduction 653
23.2 Failure Modes 654
23.3 General Fastener Design 655
23.4 Fastener Materials Selection 656
23.4.1 Standards and Specifications 656
23.4.2 Low-Alloy Steels 659
23.4.3 Stainless Steels 659
23.4.4 Aluminum Alloys 659
23.4.5 Copper Alloys 660
23.4.6 Nickel Alloys 660
23.4.7 Titanium Alloys 660
23.5 Fastener Behavior Above the Waterline 661
23.6 Fastener Behavior in Submerged, Below the Waterline 661
23.7 Corrosion Protection for Fasteners 662
References 663
Further Reading 666
24 Marine and Offshore Piping Systems 667
David A. Shifler
24.1 Piping Systems 667
24.1.1 Bilge System 667
24.1.2 Ballast System 667
24.1.3 Firefighting Systems 668
24.1.4 Drainage Systems 668
24.1.5 Fresh-Water Systems 668
24.1.6 Fuel and Flammable Liquid Piping 668
24.1.7 Ventilation Systems - Ships 669
24.1.8 Hydrocarbon Piping (Oil and Gas) 669
24.1.9 Vent System - Offshore 669
24.1.10 Flare System 669
24.1.11 Firewater Utility Piping 669
24.1.12 Risers 670
24.1.13 Subsea Piping 670
24.2 Piping System Design 671
24.3 Materials Selection 672
24.4 Failure Modes of Piping Systems 674
24.4.1 Uniform Corrosion 674
24.4.2 Pitting and Crevice Corrosion 675
24.4.3 Galvanic Corrosion 677
24.4.4 Abrasion 681
24.4.5 Erosion and Erosion Corrosion 681
24.4.6 Variable Temperature Swings 684
24.4.7 Wear and Impact 684
24.4.8 Fatigue 685
24.4.9 Water Hammer 685
24.5 Corrosion Control Methods 686
References 686
Further Reading 689
25 Corrosion Control and Preservation of Historic Marine Artifacts 691
David A. Shifler
25.1 Introduction 691
25.2 Basic Conservation Procedures 694
25.2.1 Laboratory Conservation Procedures 695
25.3 Degradation, Corrosion, and Conservation of Marine Artifacts 695
25.3.1 Corrosion and Conservation of Ferrous Alloys 696
25.3.2 Corrosion and Conservation of Other Metals and Alloys 700
25.3.2.1 Corrosion and Conservation of Copper Artifacts 701
25.3.2.2 Corrosion and Conservation of Silver Artifacts 701
25.3.3 Corrosion and Conservation of Lead, Tin, Pewter 702
References 703
Further Reading 705
Marine Archaeology Conservation 705
Index 707
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
marine corrosion; marine corrosion guide; marine corrosion reference; marine corrosion engineering; marine corrosion materials; corrosion engineering; seawater corrosion; marine corrosion modelling; marine corrosion testing; marine corrosion control
List of Contributors xix
Preface xxi
1 The Nature of Marine Environments 1
Bopinder Phull
1.1 Introduction 1
1.2 Seawater Chemistry 2
1.2.1 Chemical Composition of Seawater 2
1.2.1.1 Role of Ions 3
1.2.1.2 Dissolved Gases 5
1.2.1.3 Scale-Forming Compounds 8
1.2.1.4 Suspended Matter 9
1.2.1.5 pH 10
1.2.1.6 Chlorination 10
1.3 Physical 11
1.3.1 Temperature 11
1.3.2 Electrolytic Resistivity of Seawater 13
1.3.3 Velocity Effects 14
1.3.4 Effects of Depth 17
1.3.5 Splash and Tidal Zones 18
1.3.6 Bottom Sediments 20
1.4 Biological Effects 21
1.4.1 Microorganisms, Biofilms, and Biofouling 21
1.5 Testing 24
References 25
2 Electrochemistry and Forms of Corrosion 29
David A. Shifler
2.1 Introduction 29
2.2 Corrosion Thermodynamics 30
2.3 Corrosion Kinetics 30
2.4 Passivity 33
2.5 Corrosion Mechanistic Modes 34
2.5.1 Stray Current Corrosion 35
2.5.2 Galvanic Corrosion 35
2.5.3 Crevice Corrosion 37
2.5.4 Pitting 38
2.5.5 Intergranular Corrosion 38
2.5.6 Microbiological-Influenced Corrosion 40
2.5.7 Dealloying 41
2.5.8 Flow-Influenced Corrosion 42
2.6 Environmentally Induced Cracking 43
2.6.1 Stress Corrosion Cracking 43
2.6.2 Fatigue and Corrosion Fatigue 44
2.6.3 High-Temperature Corrosion 45
2.7 Factors Influencing Corrosion 46
References 47
3 Atmospheric Corrosion in Marine Environments 49
David G. Enos
3.1 Introduction 49
3.2 Understanding the Environment (Important Factors) 49
3.2.1 Humidity 51
3.2.2 Temperature 53
3.2.3 Solid and Liquid Contaminants (Salt Particulates, Seawater Aerosol, Dust, etc.) 53
3.2.4 Gaseous Contaminants 55
3.2.5 Physical Environment 55
3.3 Basic Electrochemistry of Atmospheric Corrosion 57
3.4 Corrosion Testing 59
3.4.1 Accelerated Testing 59
3.4.2 Long-Term Field Testing 59
3.5 Modeling 59
3.6 Summary 60
Acknowledgment 60
References 60
4 Localized Corrosion 63
David A. Shifler
4.1 Introduction 63
4.2 Pitting 63
4.2.1 Cast Irons 65
4.2.2 Carbon Steels 66
4.2.3 Stainless Steels 66
4.2.4 Nickel Alloys 69
4.2.5 Aluminum Alloys 72
4.2.6 Copper Alloys 73
4.2.7 Titanium Alloys 77
4.3 Crevice Corrosion 78
4.3.1 Cast Irons 81
4.3.2 Carbon Steels 82
4.3.3 Stainless Steels 82
4.3.4 Nickel Alloys 86
4.3.5 Aluminum Alloys 89
4.3.6 Copper Alloys 91
4.3.7 Titanium Alloys 92
4.4 Intergranular Corrosion 93
4.4.1 Cast Irons 94
4.4.2 Carbon Steels 94
4.4.3 Stainless Steels 95
4.4.4 Nickel Alloys 97
4.4.5 Aluminum Alloys 98
4.4.6 Copper Alloys 101
4.4.7 Titanium Alloys 102
4.5 Dealloying 102
4.5.1 Cast Irons 103
4.5.2 Carbon Steels 104
4.5.3 Stainless Steels 104
4.5.4 Nickel Alloys 104
4.5.5 Aluminum Alloys 104
4.5.6 Copper Alloys 105
4.5.7 Titanium Alloys 108
References 108
Further Reading 121
5 Galvanic Corrosion 123
Roger Francis
5.1 Introduction 123
5.2 Conditions Necessary for Galvanic Corrosion 124
5.3 Factors Affecting Galvanic Corrosion 125
5.3.1 Electrode Potential 125
5.3.2 Potential Variability 126
5.3.3 Electrode Efficiency 127
5.3.4 Electrolyte 129
5.3.5 Area Ratio 129
5.3.6 Aeration and Flow Rate 132
5.3.7 Metallurgical Condition and Composition 133
5.3.8 Stifling Effects 134
5.4 Alloy Groups 135
5.4.1 Group 1 Alloys 136
5.4.2 Group 2 Alloys 136
5.4.3 Group 3 Alloys 138
5.4.4 Group 4 Alloys 140
5.5 Marine Atmospheres 142
5.5.1 Factors Affecting Atmospheric Corrosion 142
5.5.2 Materials Compatibility 143
5.5.3 Atmospheric Variability 145
5.5.4 Tropical Atmospheres 145
5.6 Methods of Prevention 147
5.6.1 Materials 147
5.6.2 Insulation and Separation 147
5.6.3 Painting/Coatings 148
5.6.4 Cathodic Protection (CP) 149
5.6.5 Inhibitors 150
5.7 Design 150
References 151
6 The Effects of Turbulent Flow on Corrosion in Seawater 155
K. Daniel Efird
6.1 Introduction 155
6.1.1 Evaluating Flow Effects 155
6.2 The Basics of Turbulent Flow and Corrosion 156
6.2.1 The Nature of Turbulent Flow 156
6.2.2 Disturbed Flow 159
6.3 Erosion-Corrosion 159
6.3.1 Cavitation Corrosion 160
6.4 Flow Effects for Specific Materials 161
6.4.1 Carbon and Low Alloy Steels and Cast Irons 161
6.4.2 Copper Alloys 162
6.4.3 Passive Alloys 163
6.5 Flow Effects in Specific Facility Applications 164
6.A Wall Shear Stress and Mass Transfer Coefficient Defined 167
6.A.1 Wall Shear Stress 167
6.A.2 Mass Transfer Coefficient 168
6.A.3 Interrelationship of Mass Transfer Coefficient and Wall Shear Stress 168
6.B University of Tulsa Erosion Model 169
References 169
7 Biological Fouling and Corrosion Processes 173
Brenda J. Little and Jason S. Lee
7.1 Introduction 173
7.2 Development of Marine Fouling 174
7.2.1 Microfouling 174
7.2.2 Macrofouling 176
7.3 Influence of Marine Fouling on Corrosion 177
7.3.1 Corrosion Mechanisms Related to Generic Properties of Fouling Organisms 177
7.3.1.1 Oxygen Concentration Cells 177
7.3.1.2 Ennoblement 178
7.3.1.3 Galvanic Corrosion 178
7.3.2 Reactions Attributed to Specific Groups of Bacteria and Archaea 179
7.3.2.1 Sulfate Reduction 179
7.3.2.2 Sulfide Reactions with Specific Metals 179
7.3.2.3 Acid Production 181
7.3.2.4 Microbial Oxidation/Reduction of Iron 181
7.4 Diagnosis 182
7.5 Control and Prevention 182
7.5.1 Coatings 183
7.5.2 Biocidal Treatments 183
7.5.3 Cathodic Protection 183
7.5.4 Deoxygenation 184
7.5.5 Flow 185
7.6 Commentary 185
References 186
8 Marine Biofouling 191
Simone Duerr, Robert Edyvean, and Eleanor Ramsden-Lister
8.1 What Is Biofouling? 191
8.2 Development of Biofouling on New Artificial Surfaces 192
8.2.1 Macromolecules (Conditioning Film) 192
8.2.2 Bacteria 192
8.2.3 Diatoms, Protozoans 195
8.2.4 Larvae and Spores 195
8.3 Established Biofouling Communities 197
8.4 The Effect of Biofouling on the Corrosion of Metals in the Marine Environment 199
8.5 Past and Present Antifouling Strategies on Metals Used in the Marine Environment 201
8.5.1 Tributyltin (TBT) Self-Polishing Copolymer Paints 201
8.5.2 Controlled Depletion Polymers (CDPs)/Self-Polishing Containing Biocides and Booster Biocides 201
8.5.3 Foul Release Coatings 202
8.5.4 Electrochemical Control 203
8.5.5 Electrochlorination 204
8.5.6 Ultrasonics for Antifouling 204
8.5.7 Mechanical Cleaning and Prevention 205
8.5.8 Enzymes 205
8.5.9 Biomimetics and Bioinspiration 206
8.6 Conclusion 206
References 207
9 Environmentally Enhanced Fatigue 215
James Burns
9.1 Introduction 215
9.2 Precorrosion Effects 218
9.3 Loading Environment Effects 221
9.4 Crack Initiation 221
9.5 Crack Propagation 223
9.5.1 Aluminum 223
9.5.2 Titanium 225
9.5.3 Steel 226
9.6 Effect of Corrosion Mitigation Techniques on Fatigue 230
9.7 Conclusion 231
References 232
10 Effects of Stress - Environment Assisted Cracking 239
John R. Scully
10.1 Introduction 239
10.2 High-Strength Steels 242
10.2.1 Physical Metallurgy 242
10.2.2 General Susceptibility Trends 243
10.2.3 Dependence on Applied Potential 245
10.3 Stainless Steels 249
10.3.1 Physical Metallurgy 249
10.3.2 General Susceptibility Trends 251
10.3.3 Dependence on Applied Potential 254
10.4 Precipitation Hardened Stainless Steels 254
10.4.1 Physical and Mechanical Metallurgy of Precipitation Hardened Stainless Steel 254
10.4.2 General Susceptibility Trends 255
10.4.3 Effect of Applied Potential 260
10.5 Titanium Alloys 261
10.5.1 Physical Metallurgy 261
10.5.2 General Susceptibility Trends 263
10.5.3 Effect of Potential 264
10.6 High-Strength Aluminum Alloys 266
10.6.1 Physical Metallurgy 266
10.6.2 General Susceptibility Trends 268
10.6.3 Effects of Potential 271
10.7 Nickel Base Alloys 272
10.7.1 Physical Metallurgy 272
10.7.2 General Susceptibility Trends 273
10.7.2.1 Effects of Applied Potential 277
10.8 Copper, Copper Alloys, and Aluminum Bronze Alloys 277
10.8.1 Physical Metallurgy 277
10.8.2 General Susceptibility Trends 278
10.9 Magnesium Alloys 279
10.9.1 Physical Metallurgy 279
10.9.2 General Susceptibility Trends and Effects of Potential 279
References 280
11 Cathodic Delamination 291
Thomas Ramotowski
11.1 Introduction 291
11.2 Mechanisms for Cathodic Delamination 293
11.3 Cathodic Delamination Mitigation Strategies 296
References 298
12 High Temperature Corrosion in Marine Environments 301
David A. Shifler
12.1 Introduction 301
12.1.1 High Temperature Corrosion and Degradation Processes 301
12.2 Boilers 302
12.3 Diesel Engines 306
12.4 Gas Turbine Engines 309
12.4.1 High-Temperature Coatings 317
12.4.2 Factors Affecting Operational Life 319
12.5 Incinerators 319
12.6 Fuels 324
References 328
13 Design for Corrosion Control in Marine Environments 335
David A. Shifler
13.1 Introduction 335
13.2 General Design Approach 336
13.3 Corrosion Control Design Choices for Marine Structures 339
13.3.1 Materials 339
13.3.2 Organic Coatings 339
13.3.3 Metallic Coatings 340
13.3.4 Cathodic Protection 341
13.3.5 Inhibitors 341
13.4 Structural Designs that Minimize Corrosion 342
13.5 Inspection to Evaluate Conformance to Design, Repair Criteria 345
13.6 Ship Design in Marine Environments 346
13.6.1 Military Ships and Assets 346
13.6.2 Commercial Ship Design 348
13.6.3 Cruise Ship Design 349
13.7 Offshore Structural Design in Marine Environments 350
13.8 Summary 351
References 351
Further Reading 353
Ships 353
Offshore Structures 354
14 Modeling of Marine Corrosion Processes 355
Jason S. Lee, David G. Enos, Roger Francis, Sean Brossia, and David A. Shifler
14.1 Introduction 355
14.2 Computational Approaches 355
14.3 Assumptions in Modeling 356
14.4 Galvanic Corrosion 357
14.5 Localized Corrosion 359
14.5.1 Crevices 360
14.5.2 Cracks 363
14.5.3 Pitting 363
14.5.4 Intergranular Corrosion 364
14.6 General Corrosion 364
14.7 Atmospheric Corrosion Models 365
14.7.1 Holistic Atmospheric Corrosion Model 365
14.7.2 GILDES Model 366
14.8 Cathodic Protection 367
14.9 Recent Modeling Advances 369
14.9.1 Future Directions of DFT 370
14.10 Limitations and Future Needs 371
14.11 Summary 372
References 373
15 Marine Corrosion Testing 379
David A. Shifler and David G. Enos
15.1 Introduction 379
15.2 Corrosion Test Planning 379
15.3 Types of Corrosion Testing 381
15.3.1 Laboratory Testing 381
15.3.2 Salt Spray/Salt Fog Testing 383
15.3.2.1 Types of Salt Spray Environments 384
15.3.2.2 Limitations of Salt Spray Testing 385
15.3.3 Mixed Flowing Gas (MFG) Exposure Testing 386
15.3.4 Immersion Testing 389
15.3.5 Electrochemical Testing 393
15.3.5.1 Direct Current Electrochemical Methods 393
15.3.5.2 Nondestructive Electrochemical Methods 396
15.3.6 High Velocity Flow Testing 397
15.3.7 Environmental Cracking Test Methods 398
15.3.8 High Temperature Testing - Burner-Rigs 401
15.3.9 Molten Salt Tests 401
15.3.9.1 Thermogravimetric Analysis 402
15.3.10 Microbiological Tests 403
15.4 Field Evaluation 405
15.4.1 In-Service Testing 408
15.4.1.1 Simulated Service Testing 410
15.4.2 Standards for Seawater Testing 410
References 412
16 Nonmetallic Materials in Marine Service 421
Wayne Tucker
16.1 Introduction 421
16.2 Selection and Application 422
16.2.1 Material Definitions 422
16.2.2 Resistance to Environmental Factors 423
16.2.3 Mechanical and Physical Properties 423
16.3 Wood 424
16.3.1 Introduction 424
16.3.2 Degrading Factors 424
16.4 Plywood and Other Wood Composites 427
16.5 Concrete 428
16.5.1 Introduction 428
16.5.2 Marine Environmental Effects 429
16.5.3 Protection of Reinforced Concrete 430
16.5.4 Epoxy Coated Rebars (ECR) 431
16.5.5 Fiber Reinforced Concrete (FRC) 432
16.5.6 Repairs 432
16.6 Polymers 433
16.6.1 Fiber Reinforced Plastics (FRPs) 433
16.6.2 Environmental Effects 435
16.6.3 Fatigue of Marine Composites 436
16.6.4 Microbial Degradation 436
16.6.5 Ceramics and Glass 436
References 437
17 Electronics and Electrical Equipment in a Marine Environment 441
James A. Ellor
17.1 Introduction 441
17.2 Primary Corrosion Phenomena in a Marine Environment 442
17.2.1 Types of Corrosion 444
17.2.1.1 Galvanic Corrosion 444
17.2.1.2 Electrolytic Corrosion 445
17.2.1.3 Electrochemical Migration 445
17.3 Protection from the Environment 446
17.3.1 Conformal Coatings 446
17.3.2 Enclosures 447
17.3.3 Hermetic Seals 448
17.3.4 Dehumidification 448
17.3.5 Corrosion Inhibitors 449
17.3.6 Water-Displacing Compounds 449
17.4 Corrosion Testing for Electronics in a Marine Environment 449
17.5 Conclusions 450
References 451
18 Structural Alloys in Marine Service 453
David A. Shifler
18.1 Cast Irons 453
18.1.1 Cast Iron Metallurgy 454
18.1.2 Cast Iron Corrosion Behavior 457
18.2 Carbon Steels 458
18.2.1 Carbon Steel Chemistries 460
18.2.1.1 Effects of Alloying Additions 460
18.2.2 Surface Oxides/Corrosion Products 463
18.2.3 Heat Treating 464
18.2.4 Marine Steels 468
18.3 Stainless Steels 473
18.3.1 Stainless Steel Types 474
18.3.1.1 Austenitic Stainless Steels 474
18.3.1.2 Ferritic Stainless Steels 475
18.3.1.3 Martensitic Stainless Steels 478
18.3.1.4 Duplex Stainless Steels 478
18.3.1.5 Precipitation-Hardening Stainless Steels 479
18.3.2 Corrosion Behavior of Stainless Steels 479
18.3.3 Marine Uses of Stainless Steels 481
18.4 Nickel and Nickel Alloys 481
18.4.1 Corrosion Resistant Nickel and Nickel Alloys 483
18.4.2 High-temperature Nickel Alloys - Superalloys 486
18.5 Aluminum and Aluminum Alloys 490
18.5.1 Aluminum Alloy Familites 490
18.5.2 Heat Treatment of Aluminum Alloys 494
18.5.3 Corrosion Behavior of Aluminum Alloys 496
18.6 Copper and Copper Alloys 497
18.6.1 General Corrosion and Mechanical Properties 497
18.6.2 Bronze Alloys 498
18.6.3 Brasses 502
18.6.4 Copper-Nickel Alloys 503
18.7 Titanium and Titanium Alloys 506
18.7.1 Chemistry and Metallurgy of Titanium Alloys 507
18.7.2 General Corrosion Behavior 510
18.8 Factors Affecting Alloy Corrosion Behavior in Marine Service 510
18.8.1 Surface Properties and Processes 510
18.8.1.1 Passivity 510
18.8.2 Material Bulk Properties 513
18.8.3 Joining Effects on Materials 514
18.8.4 Cathodic Protection 518
References 518
Additional Reading and References 525
19 Marine Coatings 527
Charles G. Munger, Louis Vincent, and David A. Shifler
19.1 Introduction 527
19.2 Characteristics of a Ideal Marine Coating 528
19.3 Coating Degradation and Failures 532
19.4 Surface Preparation 532
19.5 Coating Inspection, Selection, and Application for Controlling Corrosion 536
19.6 Coatings for Marine Service 539
19.6.1 Metallized Coatings 539
19.6.1.1 Metal-Containing Primers 542
19.6.1.2 Cadmium Plating 543
19.6.1.3 Cadmium Options 543
19.6.2 Organic Coatings 544
19.6.2.1 Coating Thickness Measurements 544
19.7 Types of Coatings for Marine Vessels 545
19.7.1 Conversion Coatings 547
19.7.1.1 Hexavalent Chromate Conversion Coatings 547
19.7.1.2 Hexavalent Chromate Alternatives 547
19.7.1.3 Phosphate Coatings 548
19.7.2 Organic Coatings and Nanocomposites 548
19.7.3 Shop Primers 549
19.7.4 Universal Primers 550
19.7.5 Zinc-Rich Coatings 550
19.7.6 Organic Primers 551
19.7.7 Tie-Coats 552
19.7.8 Abrasion Resistant Coatings 552
19.7.9 Cargo Tank Linings 553
19.7.9.1 Tank Lining Chemical Resistance 554
19.7.10 Bilge Coatings 554
19.7.11 Ballast Tank Linings 555
19.7.12 Cofferdam and Void Coatings 558
19.7.13 Potable Water Tank Linings 558
19.7.14 Cosmetic Finishes - Topside Area and Interior Living and Working Spaces 559
19.7.15 Deck Coatings - Including Heli-Deck Surfaces 560
19.7.16 Hull Coatings - Freeboard Area 562
19.7.17 Maintenance Painting Programs 563
19.8 Offshore Structures 563
References 565
20 Biofouling Control 573
David A. Shifler
20.1 The Nature of Biofouling 573
20.2 Fouling Effects on Ships 574
20.2.1 Control of Biofouling 576
20.2.1.1 Biocidal Antifoulant Coatings 576
20.3 Non-biocidal Antifoulant Methods and Coatings 579
20.4 Maintenance, Monitoring, and Testing 582
References 587
21 Cathodic Protection 593
James A. Ellor, David A. Shifler, and Robert A. Bardsley
21.1 Theory 593
21.2 Reference Cells 596
21.3 Methods of Applying Cathodic Protection 597
21.3.1 Cathodic Protection Using Sacrificial Anodes 597
21.3.2 Impressed Current Cathodic Protection (ICCP) 600
21.3.2.1 Impressed Current Anodes Materials 601
21.3.2.2 Sacrificial Anodes 602
21.3.2.3 Impressed Current Cathodic Protection 604
21.4 Design Basics 604
21.4.1 Calcareous Deposits and Impacts on Protection Criteria 605
21.4.2 Polarization Characteristics Over Time 607
21.4.3 Design Using Physical Scale Modeling 608
21.4.4 Computer-Assisted Design 609
21.4.5 Protective (Dielectric) Shields 609
21.4.6 Protection Current Requirements 610
21.4.7 Polarization Potential Criteria of Protection 611
21.4.8 Automated Control Systems 611
21.5 Cathodic Protection in Marine Service 612
21.5.1 Small Boats and Large Commercial and Marine Vessels 612
21.5.2 Offshore Structures 615
21.5.3 Bridges, Wharves, and Jetties 617
21.5.4 Marine Pipelines 621
21.6 Concerns with the Use of Cathodic Protection 623
21.6.1 Corrosion/Cathodic Protection Monitoring 624
References 626
22 Corrosion Monitoring in Seawater 633
Sean Brossia
22.1 Introduction 633
22.2 Electrochemical Methods 634
22.2.1 Linear Polarization Resistance 634
22.2.2 Potential Measurements 636
22.2.3 Electrochemical Impedance Spectroscopy 637
22.2.4 Electrochemical Noise 641
22.2.5 Electrochemical Frequency Modulation 641
22.2.6 Wirebeam/Multielectrode Array Methods 641
22.3 Non-Electrochemical Methods 644
22.4 Challenges 647
22.5 Applications 648
22.6 Summary and Conclusions 649
References 650
23 Marine Fasteners 653
David A. Shifler
23.1 Introduction 653
23.2 Failure Modes 654
23.3 General Fastener Design 655
23.4 Fastener Materials Selection 656
23.4.1 Standards and Specifications 656
23.4.2 Low-Alloy Steels 659
23.4.3 Stainless Steels 659
23.4.4 Aluminum Alloys 659
23.4.5 Copper Alloys 660
23.4.6 Nickel Alloys 660
23.4.7 Titanium Alloys 660
23.5 Fastener Behavior Above the Waterline 661
23.6 Fastener Behavior in Submerged, Below the Waterline 661
23.7 Corrosion Protection for Fasteners 662
References 663
Further Reading 666
24 Marine and Offshore Piping Systems 667
David A. Shifler
24.1 Piping Systems 667
24.1.1 Bilge System 667
24.1.2 Ballast System 667
24.1.3 Firefighting Systems 668
24.1.4 Drainage Systems 668
24.1.5 Fresh-Water Systems 668
24.1.6 Fuel and Flammable Liquid Piping 668
24.1.7 Ventilation Systems - Ships 669
24.1.8 Hydrocarbon Piping (Oil and Gas) 669
24.1.9 Vent System - Offshore 669
24.1.10 Flare System 669
24.1.11 Firewater Utility Piping 669
24.1.12 Risers 670
24.1.13 Subsea Piping 670
24.2 Piping System Design 671
24.3 Materials Selection 672
24.4 Failure Modes of Piping Systems 674
24.4.1 Uniform Corrosion 674
24.4.2 Pitting and Crevice Corrosion 675
24.4.3 Galvanic Corrosion 677
24.4.4 Abrasion 681
24.4.5 Erosion and Erosion Corrosion 681
24.4.6 Variable Temperature Swings 684
24.4.7 Wear and Impact 684
24.4.8 Fatigue 685
24.4.9 Water Hammer 685
24.5 Corrosion Control Methods 686
References 686
Further Reading 689
25 Corrosion Control and Preservation of Historic Marine Artifacts 691
David A. Shifler
25.1 Introduction 691
25.2 Basic Conservation Procedures 694
25.2.1 Laboratory Conservation Procedures 695
25.3 Degradation, Corrosion, and Conservation of Marine Artifacts 695
25.3.1 Corrosion and Conservation of Ferrous Alloys 696
25.3.2 Corrosion and Conservation of Other Metals and Alloys 700
25.3.2.1 Corrosion and Conservation of Copper Artifacts 701
25.3.2.2 Corrosion and Conservation of Silver Artifacts 701
25.3.3 Corrosion and Conservation of Lead, Tin, Pewter 702
References 703
Further Reading 705
Marine Archaeology Conservation 705
Index 707
Preface xxi
1 The Nature of Marine Environments 1
Bopinder Phull
1.1 Introduction 1
1.2 Seawater Chemistry 2
1.2.1 Chemical Composition of Seawater 2
1.2.1.1 Role of Ions 3
1.2.1.2 Dissolved Gases 5
1.2.1.3 Scale-Forming Compounds 8
1.2.1.4 Suspended Matter 9
1.2.1.5 pH 10
1.2.1.6 Chlorination 10
1.3 Physical 11
1.3.1 Temperature 11
1.3.2 Electrolytic Resistivity of Seawater 13
1.3.3 Velocity Effects 14
1.3.4 Effects of Depth 17
1.3.5 Splash and Tidal Zones 18
1.3.6 Bottom Sediments 20
1.4 Biological Effects 21
1.4.1 Microorganisms, Biofilms, and Biofouling 21
1.5 Testing 24
References 25
2 Electrochemistry and Forms of Corrosion 29
David A. Shifler
2.1 Introduction 29
2.2 Corrosion Thermodynamics 30
2.3 Corrosion Kinetics 30
2.4 Passivity 33
2.5 Corrosion Mechanistic Modes 34
2.5.1 Stray Current Corrosion 35
2.5.2 Galvanic Corrosion 35
2.5.3 Crevice Corrosion 37
2.5.4 Pitting 38
2.5.5 Intergranular Corrosion 38
2.5.6 Microbiological-Influenced Corrosion 40
2.5.7 Dealloying 41
2.5.8 Flow-Influenced Corrosion 42
2.6 Environmentally Induced Cracking 43
2.6.1 Stress Corrosion Cracking 43
2.6.2 Fatigue and Corrosion Fatigue 44
2.6.3 High-Temperature Corrosion 45
2.7 Factors Influencing Corrosion 46
References 47
3 Atmospheric Corrosion in Marine Environments 49
David G. Enos
3.1 Introduction 49
3.2 Understanding the Environment (Important Factors) 49
3.2.1 Humidity 51
3.2.2 Temperature 53
3.2.3 Solid and Liquid Contaminants (Salt Particulates, Seawater Aerosol, Dust, etc.) 53
3.2.4 Gaseous Contaminants 55
3.2.5 Physical Environment 55
3.3 Basic Electrochemistry of Atmospheric Corrosion 57
3.4 Corrosion Testing 59
3.4.1 Accelerated Testing 59
3.4.2 Long-Term Field Testing 59
3.5 Modeling 59
3.6 Summary 60
Acknowledgment 60
References 60
4 Localized Corrosion 63
David A. Shifler
4.1 Introduction 63
4.2 Pitting 63
4.2.1 Cast Irons 65
4.2.2 Carbon Steels 66
4.2.3 Stainless Steels 66
4.2.4 Nickel Alloys 69
4.2.5 Aluminum Alloys 72
4.2.6 Copper Alloys 73
4.2.7 Titanium Alloys 77
4.3 Crevice Corrosion 78
4.3.1 Cast Irons 81
4.3.2 Carbon Steels 82
4.3.3 Stainless Steels 82
4.3.4 Nickel Alloys 86
4.3.5 Aluminum Alloys 89
4.3.6 Copper Alloys 91
4.3.7 Titanium Alloys 92
4.4 Intergranular Corrosion 93
4.4.1 Cast Irons 94
4.4.2 Carbon Steels 94
4.4.3 Stainless Steels 95
4.4.4 Nickel Alloys 97
4.4.5 Aluminum Alloys 98
4.4.6 Copper Alloys 101
4.4.7 Titanium Alloys 102
4.5 Dealloying 102
4.5.1 Cast Irons 103
4.5.2 Carbon Steels 104
4.5.3 Stainless Steels 104
4.5.4 Nickel Alloys 104
4.5.5 Aluminum Alloys 104
4.5.6 Copper Alloys 105
4.5.7 Titanium Alloys 108
References 108
Further Reading 121
5 Galvanic Corrosion 123
Roger Francis
5.1 Introduction 123
5.2 Conditions Necessary for Galvanic Corrosion 124
5.3 Factors Affecting Galvanic Corrosion 125
5.3.1 Electrode Potential 125
5.3.2 Potential Variability 126
5.3.3 Electrode Efficiency 127
5.3.4 Electrolyte 129
5.3.5 Area Ratio 129
5.3.6 Aeration and Flow Rate 132
5.3.7 Metallurgical Condition and Composition 133
5.3.8 Stifling Effects 134
5.4 Alloy Groups 135
5.4.1 Group 1 Alloys 136
5.4.2 Group 2 Alloys 136
5.4.3 Group 3 Alloys 138
5.4.4 Group 4 Alloys 140
5.5 Marine Atmospheres 142
5.5.1 Factors Affecting Atmospheric Corrosion 142
5.5.2 Materials Compatibility 143
5.5.3 Atmospheric Variability 145
5.5.4 Tropical Atmospheres 145
5.6 Methods of Prevention 147
5.6.1 Materials 147
5.6.2 Insulation and Separation 147
5.6.3 Painting/Coatings 148
5.6.4 Cathodic Protection (CP) 149
5.6.5 Inhibitors 150
5.7 Design 150
References 151
6 The Effects of Turbulent Flow on Corrosion in Seawater 155
K. Daniel Efird
6.1 Introduction 155
6.1.1 Evaluating Flow Effects 155
6.2 The Basics of Turbulent Flow and Corrosion 156
6.2.1 The Nature of Turbulent Flow 156
6.2.2 Disturbed Flow 159
6.3 Erosion-Corrosion 159
6.3.1 Cavitation Corrosion 160
6.4 Flow Effects for Specific Materials 161
6.4.1 Carbon and Low Alloy Steels and Cast Irons 161
6.4.2 Copper Alloys 162
6.4.3 Passive Alloys 163
6.5 Flow Effects in Specific Facility Applications 164
6.A Wall Shear Stress and Mass Transfer Coefficient Defined 167
6.A.1 Wall Shear Stress 167
6.A.2 Mass Transfer Coefficient 168
6.A.3 Interrelationship of Mass Transfer Coefficient and Wall Shear Stress 168
6.B University of Tulsa Erosion Model 169
References 169
7 Biological Fouling and Corrosion Processes 173
Brenda J. Little and Jason S. Lee
7.1 Introduction 173
7.2 Development of Marine Fouling 174
7.2.1 Microfouling 174
7.2.2 Macrofouling 176
7.3 Influence of Marine Fouling on Corrosion 177
7.3.1 Corrosion Mechanisms Related to Generic Properties of Fouling Organisms 177
7.3.1.1 Oxygen Concentration Cells 177
7.3.1.2 Ennoblement 178
7.3.1.3 Galvanic Corrosion 178
7.3.2 Reactions Attributed to Specific Groups of Bacteria and Archaea 179
7.3.2.1 Sulfate Reduction 179
7.3.2.2 Sulfide Reactions with Specific Metals 179
7.3.2.3 Acid Production 181
7.3.2.4 Microbial Oxidation/Reduction of Iron 181
7.4 Diagnosis 182
7.5 Control and Prevention 182
7.5.1 Coatings 183
7.5.2 Biocidal Treatments 183
7.5.3 Cathodic Protection 183
7.5.4 Deoxygenation 184
7.5.5 Flow 185
7.6 Commentary 185
References 186
8 Marine Biofouling 191
Simone Duerr, Robert Edyvean, and Eleanor Ramsden-Lister
8.1 What Is Biofouling? 191
8.2 Development of Biofouling on New Artificial Surfaces 192
8.2.1 Macromolecules (Conditioning Film) 192
8.2.2 Bacteria 192
8.2.3 Diatoms, Protozoans 195
8.2.4 Larvae and Spores 195
8.3 Established Biofouling Communities 197
8.4 The Effect of Biofouling on the Corrosion of Metals in the Marine Environment 199
8.5 Past and Present Antifouling Strategies on Metals Used in the Marine Environment 201
8.5.1 Tributyltin (TBT) Self-Polishing Copolymer Paints 201
8.5.2 Controlled Depletion Polymers (CDPs)/Self-Polishing Containing Biocides and Booster Biocides 201
8.5.3 Foul Release Coatings 202
8.5.4 Electrochemical Control 203
8.5.5 Electrochlorination 204
8.5.6 Ultrasonics for Antifouling 204
8.5.7 Mechanical Cleaning and Prevention 205
8.5.8 Enzymes 205
8.5.9 Biomimetics and Bioinspiration 206
8.6 Conclusion 206
References 207
9 Environmentally Enhanced Fatigue 215
James Burns
9.1 Introduction 215
9.2 Precorrosion Effects 218
9.3 Loading Environment Effects 221
9.4 Crack Initiation 221
9.5 Crack Propagation 223
9.5.1 Aluminum 223
9.5.2 Titanium 225
9.5.3 Steel 226
9.6 Effect of Corrosion Mitigation Techniques on Fatigue 230
9.7 Conclusion 231
References 232
10 Effects of Stress - Environment Assisted Cracking 239
John R. Scully
10.1 Introduction 239
10.2 High-Strength Steels 242
10.2.1 Physical Metallurgy 242
10.2.2 General Susceptibility Trends 243
10.2.3 Dependence on Applied Potential 245
10.3 Stainless Steels 249
10.3.1 Physical Metallurgy 249
10.3.2 General Susceptibility Trends 251
10.3.3 Dependence on Applied Potential 254
10.4 Precipitation Hardened Stainless Steels 254
10.4.1 Physical and Mechanical Metallurgy of Precipitation Hardened Stainless Steel 254
10.4.2 General Susceptibility Trends 255
10.4.3 Effect of Applied Potential 260
10.5 Titanium Alloys 261
10.5.1 Physical Metallurgy 261
10.5.2 General Susceptibility Trends 263
10.5.3 Effect of Potential 264
10.6 High-Strength Aluminum Alloys 266
10.6.1 Physical Metallurgy 266
10.6.2 General Susceptibility Trends 268
10.6.3 Effects of Potential 271
10.7 Nickel Base Alloys 272
10.7.1 Physical Metallurgy 272
10.7.2 General Susceptibility Trends 273
10.7.2.1 Effects of Applied Potential 277
10.8 Copper, Copper Alloys, and Aluminum Bronze Alloys 277
10.8.1 Physical Metallurgy 277
10.8.2 General Susceptibility Trends 278
10.9 Magnesium Alloys 279
10.9.1 Physical Metallurgy 279
10.9.2 General Susceptibility Trends and Effects of Potential 279
References 280
11 Cathodic Delamination 291
Thomas Ramotowski
11.1 Introduction 291
11.2 Mechanisms for Cathodic Delamination 293
11.3 Cathodic Delamination Mitigation Strategies 296
References 298
12 High Temperature Corrosion in Marine Environments 301
David A. Shifler
12.1 Introduction 301
12.1.1 High Temperature Corrosion and Degradation Processes 301
12.2 Boilers 302
12.3 Diesel Engines 306
12.4 Gas Turbine Engines 309
12.4.1 High-Temperature Coatings 317
12.4.2 Factors Affecting Operational Life 319
12.5 Incinerators 319
12.6 Fuels 324
References 328
13 Design for Corrosion Control in Marine Environments 335
David A. Shifler
13.1 Introduction 335
13.2 General Design Approach 336
13.3 Corrosion Control Design Choices for Marine Structures 339
13.3.1 Materials 339
13.3.2 Organic Coatings 339
13.3.3 Metallic Coatings 340
13.3.4 Cathodic Protection 341
13.3.5 Inhibitors 341
13.4 Structural Designs that Minimize Corrosion 342
13.5 Inspection to Evaluate Conformance to Design, Repair Criteria 345
13.6 Ship Design in Marine Environments 346
13.6.1 Military Ships and Assets 346
13.6.2 Commercial Ship Design 348
13.6.3 Cruise Ship Design 349
13.7 Offshore Structural Design in Marine Environments 350
13.8 Summary 351
References 351
Further Reading 353
Ships 353
Offshore Structures 354
14 Modeling of Marine Corrosion Processes 355
Jason S. Lee, David G. Enos, Roger Francis, Sean Brossia, and David A. Shifler
14.1 Introduction 355
14.2 Computational Approaches 355
14.3 Assumptions in Modeling 356
14.4 Galvanic Corrosion 357
14.5 Localized Corrosion 359
14.5.1 Crevices 360
14.5.2 Cracks 363
14.5.3 Pitting 363
14.5.4 Intergranular Corrosion 364
14.6 General Corrosion 364
14.7 Atmospheric Corrosion Models 365
14.7.1 Holistic Atmospheric Corrosion Model 365
14.7.2 GILDES Model 366
14.8 Cathodic Protection 367
14.9 Recent Modeling Advances 369
14.9.1 Future Directions of DFT 370
14.10 Limitations and Future Needs 371
14.11 Summary 372
References 373
15 Marine Corrosion Testing 379
David A. Shifler and David G. Enos
15.1 Introduction 379
15.2 Corrosion Test Planning 379
15.3 Types of Corrosion Testing 381
15.3.1 Laboratory Testing 381
15.3.2 Salt Spray/Salt Fog Testing 383
15.3.2.1 Types of Salt Spray Environments 384
15.3.2.2 Limitations of Salt Spray Testing 385
15.3.3 Mixed Flowing Gas (MFG) Exposure Testing 386
15.3.4 Immersion Testing 389
15.3.5 Electrochemical Testing 393
15.3.5.1 Direct Current Electrochemical Methods 393
15.3.5.2 Nondestructive Electrochemical Methods 396
15.3.6 High Velocity Flow Testing 397
15.3.7 Environmental Cracking Test Methods 398
15.3.8 High Temperature Testing - Burner-Rigs 401
15.3.9 Molten Salt Tests 401
15.3.9.1 Thermogravimetric Analysis 402
15.3.10 Microbiological Tests 403
15.4 Field Evaluation 405
15.4.1 In-Service Testing 408
15.4.1.1 Simulated Service Testing 410
15.4.2 Standards for Seawater Testing 410
References 412
16 Nonmetallic Materials in Marine Service 421
Wayne Tucker
16.1 Introduction 421
16.2 Selection and Application 422
16.2.1 Material Definitions 422
16.2.2 Resistance to Environmental Factors 423
16.2.3 Mechanical and Physical Properties 423
16.3 Wood 424
16.3.1 Introduction 424
16.3.2 Degrading Factors 424
16.4 Plywood and Other Wood Composites 427
16.5 Concrete 428
16.5.1 Introduction 428
16.5.2 Marine Environmental Effects 429
16.5.3 Protection of Reinforced Concrete 430
16.5.4 Epoxy Coated Rebars (ECR) 431
16.5.5 Fiber Reinforced Concrete (FRC) 432
16.5.6 Repairs 432
16.6 Polymers 433
16.6.1 Fiber Reinforced Plastics (FRPs) 433
16.6.2 Environmental Effects 435
16.6.3 Fatigue of Marine Composites 436
16.6.4 Microbial Degradation 436
16.6.5 Ceramics and Glass 436
References 437
17 Electronics and Electrical Equipment in a Marine Environment 441
James A. Ellor
17.1 Introduction 441
17.2 Primary Corrosion Phenomena in a Marine Environment 442
17.2.1 Types of Corrosion 444
17.2.1.1 Galvanic Corrosion 444
17.2.1.2 Electrolytic Corrosion 445
17.2.1.3 Electrochemical Migration 445
17.3 Protection from the Environment 446
17.3.1 Conformal Coatings 446
17.3.2 Enclosures 447
17.3.3 Hermetic Seals 448
17.3.4 Dehumidification 448
17.3.5 Corrosion Inhibitors 449
17.3.6 Water-Displacing Compounds 449
17.4 Corrosion Testing for Electronics in a Marine Environment 449
17.5 Conclusions 450
References 451
18 Structural Alloys in Marine Service 453
David A. Shifler
18.1 Cast Irons 453
18.1.1 Cast Iron Metallurgy 454
18.1.2 Cast Iron Corrosion Behavior 457
18.2 Carbon Steels 458
18.2.1 Carbon Steel Chemistries 460
18.2.1.1 Effects of Alloying Additions 460
18.2.2 Surface Oxides/Corrosion Products 463
18.2.3 Heat Treating 464
18.2.4 Marine Steels 468
18.3 Stainless Steels 473
18.3.1 Stainless Steel Types 474
18.3.1.1 Austenitic Stainless Steels 474
18.3.1.2 Ferritic Stainless Steels 475
18.3.1.3 Martensitic Stainless Steels 478
18.3.1.4 Duplex Stainless Steels 478
18.3.1.5 Precipitation-Hardening Stainless Steels 479
18.3.2 Corrosion Behavior of Stainless Steels 479
18.3.3 Marine Uses of Stainless Steels 481
18.4 Nickel and Nickel Alloys 481
18.4.1 Corrosion Resistant Nickel and Nickel Alloys 483
18.4.2 High-temperature Nickel Alloys - Superalloys 486
18.5 Aluminum and Aluminum Alloys 490
18.5.1 Aluminum Alloy Familites 490
18.5.2 Heat Treatment of Aluminum Alloys 494
18.5.3 Corrosion Behavior of Aluminum Alloys 496
18.6 Copper and Copper Alloys 497
18.6.1 General Corrosion and Mechanical Properties 497
18.6.2 Bronze Alloys 498
18.6.3 Brasses 502
18.6.4 Copper-Nickel Alloys 503
18.7 Titanium and Titanium Alloys 506
18.7.1 Chemistry and Metallurgy of Titanium Alloys 507
18.7.2 General Corrosion Behavior 510
18.8 Factors Affecting Alloy Corrosion Behavior in Marine Service 510
18.8.1 Surface Properties and Processes 510
18.8.1.1 Passivity 510
18.8.2 Material Bulk Properties 513
18.8.3 Joining Effects on Materials 514
18.8.4 Cathodic Protection 518
References 518
Additional Reading and References 525
19 Marine Coatings 527
Charles G. Munger, Louis Vincent, and David A. Shifler
19.1 Introduction 527
19.2 Characteristics of a Ideal Marine Coating 528
19.3 Coating Degradation and Failures 532
19.4 Surface Preparation 532
19.5 Coating Inspection, Selection, and Application for Controlling Corrosion 536
19.6 Coatings for Marine Service 539
19.6.1 Metallized Coatings 539
19.6.1.1 Metal-Containing Primers 542
19.6.1.2 Cadmium Plating 543
19.6.1.3 Cadmium Options 543
19.6.2 Organic Coatings 544
19.6.2.1 Coating Thickness Measurements 544
19.7 Types of Coatings for Marine Vessels 545
19.7.1 Conversion Coatings 547
19.7.1.1 Hexavalent Chromate Conversion Coatings 547
19.7.1.2 Hexavalent Chromate Alternatives 547
19.7.1.3 Phosphate Coatings 548
19.7.2 Organic Coatings and Nanocomposites 548
19.7.3 Shop Primers 549
19.7.4 Universal Primers 550
19.7.5 Zinc-Rich Coatings 550
19.7.6 Organic Primers 551
19.7.7 Tie-Coats 552
19.7.8 Abrasion Resistant Coatings 552
19.7.9 Cargo Tank Linings 553
19.7.9.1 Tank Lining Chemical Resistance 554
19.7.10 Bilge Coatings 554
19.7.11 Ballast Tank Linings 555
19.7.12 Cofferdam and Void Coatings 558
19.7.13 Potable Water Tank Linings 558
19.7.14 Cosmetic Finishes - Topside Area and Interior Living and Working Spaces 559
19.7.15 Deck Coatings - Including Heli-Deck Surfaces 560
19.7.16 Hull Coatings - Freeboard Area 562
19.7.17 Maintenance Painting Programs 563
19.8 Offshore Structures 563
References 565
20 Biofouling Control 573
David A. Shifler
20.1 The Nature of Biofouling 573
20.2 Fouling Effects on Ships 574
20.2.1 Control of Biofouling 576
20.2.1.1 Biocidal Antifoulant Coatings 576
20.3 Non-biocidal Antifoulant Methods and Coatings 579
20.4 Maintenance, Monitoring, and Testing 582
References 587
21 Cathodic Protection 593
James A. Ellor, David A. Shifler, and Robert A. Bardsley
21.1 Theory 593
21.2 Reference Cells 596
21.3 Methods of Applying Cathodic Protection 597
21.3.1 Cathodic Protection Using Sacrificial Anodes 597
21.3.2 Impressed Current Cathodic Protection (ICCP) 600
21.3.2.1 Impressed Current Anodes Materials 601
21.3.2.2 Sacrificial Anodes 602
21.3.2.3 Impressed Current Cathodic Protection 604
21.4 Design Basics 604
21.4.1 Calcareous Deposits and Impacts on Protection Criteria 605
21.4.2 Polarization Characteristics Over Time 607
21.4.3 Design Using Physical Scale Modeling 608
21.4.4 Computer-Assisted Design 609
21.4.5 Protective (Dielectric) Shields 609
21.4.6 Protection Current Requirements 610
21.4.7 Polarization Potential Criteria of Protection 611
21.4.8 Automated Control Systems 611
21.5 Cathodic Protection in Marine Service 612
21.5.1 Small Boats and Large Commercial and Marine Vessels 612
21.5.2 Offshore Structures 615
21.5.3 Bridges, Wharves, and Jetties 617
21.5.4 Marine Pipelines 621
21.6 Concerns with the Use of Cathodic Protection 623
21.6.1 Corrosion/Cathodic Protection Monitoring 624
References 626
22 Corrosion Monitoring in Seawater 633
Sean Brossia
22.1 Introduction 633
22.2 Electrochemical Methods 634
22.2.1 Linear Polarization Resistance 634
22.2.2 Potential Measurements 636
22.2.3 Electrochemical Impedance Spectroscopy 637
22.2.4 Electrochemical Noise 641
22.2.5 Electrochemical Frequency Modulation 641
22.2.6 Wirebeam/Multielectrode Array Methods 641
22.3 Non-Electrochemical Methods 644
22.4 Challenges 647
22.5 Applications 648
22.6 Summary and Conclusions 649
References 650
23 Marine Fasteners 653
David A. Shifler
23.1 Introduction 653
23.2 Failure Modes 654
23.3 General Fastener Design 655
23.4 Fastener Materials Selection 656
23.4.1 Standards and Specifications 656
23.4.2 Low-Alloy Steels 659
23.4.3 Stainless Steels 659
23.4.4 Aluminum Alloys 659
23.4.5 Copper Alloys 660
23.4.6 Nickel Alloys 660
23.4.7 Titanium Alloys 660
23.5 Fastener Behavior Above the Waterline 661
23.6 Fastener Behavior in Submerged, Below the Waterline 661
23.7 Corrosion Protection for Fasteners 662
References 663
Further Reading 666
24 Marine and Offshore Piping Systems 667
David A. Shifler
24.1 Piping Systems 667
24.1.1 Bilge System 667
24.1.2 Ballast System 667
24.1.3 Firefighting Systems 668
24.1.4 Drainage Systems 668
24.1.5 Fresh-Water Systems 668
24.1.6 Fuel and Flammable Liquid Piping 668
24.1.7 Ventilation Systems - Ships 669
24.1.8 Hydrocarbon Piping (Oil and Gas) 669
24.1.9 Vent System - Offshore 669
24.1.10 Flare System 669
24.1.11 Firewater Utility Piping 669
24.1.12 Risers 670
24.1.13 Subsea Piping 670
24.2 Piping System Design 671
24.3 Materials Selection 672
24.4 Failure Modes of Piping Systems 674
24.4.1 Uniform Corrosion 674
24.4.2 Pitting and Crevice Corrosion 675
24.4.3 Galvanic Corrosion 677
24.4.4 Abrasion 681
24.4.5 Erosion and Erosion Corrosion 681
24.4.6 Variable Temperature Swings 684
24.4.7 Wear and Impact 684
24.4.8 Fatigue 685
24.4.9 Water Hammer 685
24.5 Corrosion Control Methods 686
References 686
Further Reading 689
25 Corrosion Control and Preservation of Historic Marine Artifacts 691
David A. Shifler
25.1 Introduction 691
25.2 Basic Conservation Procedures 694
25.2.1 Laboratory Conservation Procedures 695
25.3 Degradation, Corrosion, and Conservation of Marine Artifacts 695
25.3.1 Corrosion and Conservation of Ferrous Alloys 696
25.3.2 Corrosion and Conservation of Other Metals and Alloys 700
25.3.2.1 Corrosion and Conservation of Copper Artifacts 701
25.3.2.2 Corrosion and Conservation of Silver Artifacts 701
25.3.3 Corrosion and Conservation of Lead, Tin, Pewter 702
References 703
Further Reading 705
Marine Archaeology Conservation 705
Index 707
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.