Internet of Medical Things (IoMT)

Internet of Medical Things (IoMT)

Healthcare Transformation

Hemalatha, R. J.; Akila, D.; Paul, Anand; Balaganesh, D.

John Wiley & Sons Inc

03/2022

336

Dura

Inglês

9781119768838

15 a 20 dias

642

Descrição não disponível.
Preface xv

1 In Silico Molecular Modeling and Docking Analysis in Lung Cancer Cell Proteins 1
Manisha Sritharan and Asita Elengoe

1.1 Introduction 2

1.2 Methodology 4

1.2.1 Sequence of Protein 4

1.2.2 Homology Modeling 4

1.2.3 Physiochemical Characterization 4

1.2.4 Determination of Secondary Models 4

1.2.5 Determination of Stability of Protein Structures 4

1.2.6 Identification of Active Site 4

1.2.7 Preparation of Ligand Model 5

1.2.8 Docking of Target Protein and Phytocompound 5

1.3 Results and Discussion 5

1.3.1 Determination of Physiochemical Characters 5

1.3.2 Prediction of Secondary Structures 7

1.3.3 Verification of Stability of Protein Structures 7

1.3.4 Identification of Active Sites 14

1.3.5 Target Protein-Ligand Docking 14

1.4 Conclusion 18

References 18

2 Medical Data Classification in Cloud Computing Using Soft Computing With Voting Classifier: A Review 23
Saurabh Sharma, Harish K. Shakya and Ashish Mishra

2.1 Introduction 24

2.1.1 Security in Medical Big Data Analytics 24

2.1.1.1 Capture 24

2.1.1.2 Cleaning 25

2.1.1.3 Storage 25

2.1.1.4 Security 26

2.1.1.5 Stewardship 26

2.2 Access Control-Based Security 27

2.2.1 Authentication 27

2.2.1.1 User Password Authentication 28

2.2.1.2 Windows-Based User Authentication 28

2.2.1.3 Directory-Based Authentication 28

2.2.1.4 Certificate-Based Authentication 28

2.2.1.5 Smart Card-Based Authentication 29

2.2.1.6 Biometrics 29

2.2.1.7 Grid-Based Authentication 29

2.2.1.8 Knowledge-Based Authentication 29

2.2.1.9 Machine Authentication 29

2.2.1.10 One-Time Password (OTP) 30

2.2.1.11 Authority 30

2.2.1.12 Global Authorization 30

2.3 System Model 30

2.3.1 Role and Purpose of Design 31

2.3.1.1 Patients 31

2.3.1.2 Cloud Server 31

2.3.1.3 Doctor 31

2.4 Data Classification 32

2.4.1 Access Control 32

2.4.2 Content 33

2.4.3 Storage 33

2.4.4 Soft Computing Techniques for Data Classification 34

2.5 Related Work 36

2.6 Conclusion 42

References 43

3 Research Challenges in Pre-Copy Virtual Machine Migration in Cloud Environment 45
Nirmala Devi N. and Vengatesh Kumar S.

3.1 Introduction 46

3.1.1 Cloud Computing 46

3.1.1.1 Cloud Service Provider 47

3.1.1.2 Data Storage and Security 47

3.1.2 Virtualization 48

3.1.2.1 Virtualization Terminology 49

3.1.3 Approach to Virtualization 50

3.1.4 Processor Issues 51

3.1.5 Memory Management 51

3.1.6 Benefits of Virtualization 51

3.1.7 Virtual Machine Migration 51

3.1.7.1 Pre-Copy 52

3.1.7.2 Post-Copy 52

3.1.7.3 Stop and Copy 53

3.2 Existing Technology and Its Review 54

3.3 Research Design 56

3.3.1 Basic Overview of VM Pre-Copy Live Migration 57

3.3.2 Improved Pre-Copy Approach 58

3.3.3 Time Series-Based Pre-Copy Approach 60

3.3.4 Memory-Bound Pre-Copy Live Migration 62

3.3.5 Three-Phase Optimization Method (TPO) 62

3.3.6 Multiphase Pre-Copy Strategy 64

3.4 Results 65

3.4.1 Finding 65

3.5 Discussion 69

3.5.1 Limitation 69

3.5.2 Future Scope 70

3.6 Conclusion 70

References 71

4 Estimation and Analysis of Prediction Rate of Pre-Trained Deep Learning Network in Classification of Brain Tumor MRI Images 73
Krishnamoorthy Raghavan Narasu, Anima Nanda, Marshiana D., Bestley Joe and Vinoth Kumar

4.1 Introduction 74

4.2 Classes of Brain Tumors 75

4.3 Literature Survey 76

4.4 Methodology 78

4.5 Conclusion 93

References 95

5 An Intelligent Healthcare Monitoring System for Coma Patients 99
Bethanney Janney J., T. Sudhakar, Sindu Divakaran, Chandana H. and Caroline Chriselda L.

5.1 Introduction 100

5.2 Related Works 102

5.3 Materials and Methods 104

5.3.1 Existing System 104

5.3.2 Proposed System 105

5.3.3 Working 105

5.3.4 Module Description 106

5.3.4.1 Pulse Sensor 106

5.3.4.2 Temperature Sensor 107

5.3.4.3 Spirometer 107

5.3.4.4 OpenCV (Open Source Computer Vision) 108

5.3.4.5 Raspberry Pi 108

5.3.4.6 USB Camera 109

5.3.4.7 AVR Module 109

5.3.4.8 Power Supply 109

5.3.4.9 USB to TTL Converter 110

5.3.4.10 EEG of Comatose Patients 110

5.4 Results and Discussion 111

5.5 Conclusion 116

References 117

6 Deep Learning Interpretation of Biomedical Data 121
T.R. Thamizhvani, R. Chandrasekaran and T.R. Ineyathendral

6.1 Introduction 122

6.2 Deep Learning Models 125

6.2.1 Recurrent Neural Networks 125

6.2.2 LSTM/GRU Networks 127

6.2.3 Convolutional Neural Networks 128

6.2.4 Deep Belief Networks 130

6.2.5 Deep Stacking Networks 131

6.3 Interpretation of Deep Learning With Biomedical Data 132

6.4 Conclusion 139

References 140

7 Evolution of Electronic Health Records 143
G. Umashankar, Abinaya P., J. Premkumar, T. Sudhakar and S. Krishnakumar

7.1 Introduction 143

7.2 Traditional Paper Method 144

7.3 IoMT 144

7.4 Telemedicine and IoMT 145

7.4.1 Advantages of Telemedicine 145

7.4.2 Drawbacks 146

7.4.3 IoMT Advantages with Telemedicine 146

7.4.4 Limitations of IoMT With Telemedicine 147

7.5 Cyber Security 147

7.6 Materials and Methods 147

7.6.1 General Method 147

7.6.2 Data Security 148

7.7 Literature Review 148

7.8 Applications of Electronic Health Records 150

7.8.1 Clinical Research 150

7.8.1.1 Introduction 150

7.8.1.2 Data Significance and Evaluation 151

7.8.1.3 Conclusion 151

7.8.2 Diagnosis and Monitoring 151

7.8.2.1 Introduction 151

7.8.2.2 Contributions 152

7.8.2.3 Applications 152

7.8.3 Track Medical Progression 153

7.8.3.1 Introduction 153

7.8.3.2 Method Used 153

7.8.3.3 Conclusion 154

7.8.4 Wearable Devices 154

7.8.4.1 Introduction 154

7.8.4.2 Proposed Method 155

7.8.4.3 Conclusion 155

7.9 Results and Discussion 155

7.10 Challenges Ahead 157

7.11 Conclusion 158

References 158

8 Architecture of IoMT in Healthcare 161
A. Josephin Arockia Dhiyya

8.1 Introduction 161

8.1.1 On-Body Segment 162

8.1.2 In-Home Segment 162

8.1.3 Network Segment Layer 163

8.1.4 In-Clinic Segment 163

8.1.5 In-Hospital Segment 163

8.1.6 Future of IoMT? 164

8.2 Preferences of the Internet of Things 165

8.2.1 Cost Decrease 165

8.2.2 Proficiency and Efficiency 165

8.2.3 Business Openings 165

8.2.4 Client Experience 166

8.2.5 Portability and Nimbleness 166

8.3 loMT Progress in COVID-19 Situations: Presentation 167

8.3.1 The IoMT Environment 168

8.3.2 IoMT Pandemic Alleviation Design 169

8.3.3 Man-Made Consciousness and Large Information Innovation in IoMT 170

8.4 Major Applications of IoMT 171

References 172

9 Performance Assessment of IoMT Services and Protocols 173
A. Keerthana and Karthiga

9.1 Introduction 174

9.2 IoMT Architecture and Platform 175

9.2.1 Architecture 176

9.2.2 Devices Integration Layer 177

9.3 Types of Protocols 177

9.3.1 Internet Protocol for Medical IoT Smart Devices 177

9.3.1.1 HTTP 178

9.3.1.2 Message Queue Telemetry Transport (MQTT) 179

9.3.1.3 Constrained Application Protocol (CoAP) 180

9.3.1.4 AMQP: Advanced Message Queuing Protocol (AMQP) 181

9.3.1.5 Extensible Message and Presence Protocol (XMPP) 181

9.3.1.6 DDS 183

9.4 Testing Process in IoMT 183

9.5 Issues and Challenges 185

9.6 Conclusion 185

References 185

10 Performance Evaluation of Wearable IoT-Enabled Mesh Network for Rural Health Monitoring 187
G. Merlin Sheeba and Y. Bevish Jinila

10.1 Introduction 188

10.2 Proposed System Framework 190

10.2.1 System Description 190

10.2.2 Health Monitoring Center 192

10.2.2.1 Body Sensor 192

10.2.2.2 Wireless Sensor Coordinator/Transceiver 192

10.2.2.3 Ontology Information Center 195

10.2.2.4 Mesh Backbone-Placement and Routing 196

10.3 Experimental Evaluation 200

10.4 Performance Evaluation 201

10.4.1 Energy Consumption 201

10.4.2 Survival Rate 201

10.4.3 End-to-End Delay 202

10.5 Conclusion 204

References 204

11 Management of Diabetes Mellitus (DM) for Children and Adults Based on Internet of Things (IoT) 207
Krishnakumar S., Umashankar G., Lumen Christy V., Vikas and Hemalatha R.J.

11.1 Introduction 208

11.1.1 Prevalence 209

11.1.2 Management of Diabetes 209

11.1.3 Blood Glucose Monitoring 210

11.1.4 Continuous Glucose Monitors 211

11.1.5 Minimally Invasive Glucose Monitors 211

11.1.6 Non-Invasive Glucose Monitors 211

11.1.7 Existing System 211

11.2 Materials and Methods 212

11.2.1 Artificial Neural Network 212

11.2.2 Data Acquisition 213

11.2.3 Histogram Calculation 213

11.2.4 IoT Cloud Computing 214

11.2.5 Proposed System 215

11.2.6 Advantages 215

11.2.7 Disadvantages 215

11.2.8 Applications 216

11.2.9 Arduino Pro Mini 216

11.2.10 LM78XX 217

11.2.11 MAX30100 218

11.2.12 LM35 Temperature Sensors 218

11.3 Results and Discussion 219

11.4 Summary 222

11.5 Conclusion 222

References 223

12 Wearable Health Monitoring Systems Using IoMT 225
Jaya Rubi and A. Josephin Arockia Dhivya

12.1 Introduction 225

12.2 IoMT in Developing Wearable Health Surveillance System 226

12.2.1 A Wearable Health Monitoring System with Multi-Parameters 227

12.2.2 Wearable Input Device for Smart Glasses Based on a Wristband-Type Motion-Aware Touch Panel 228

12.2.3 Smart Belt: A Wearable Device for Managing Abdominal Obesity 228

12.2.4 Smart Bracelets: Automating the Personal Safety Using Wearable Smart Jewelry 228

12.3 Vital Parameters That Can Be Monitored Using Wearable Devices 229

12.3.1 Electrocardiogram 230

12.3.2 Heart Rate 231

12.3.3 Blood Pressure 232

12.3.4 Respiration Rate 232

12.3.5 Blood Oxygen Saturation 234

12.3.6 Blood Glucose 235

12.3.7 Skin Perspiration 236

12.3.8 Capnography 238

12.3.9 Body Temperature 239

12.4 Challenges Faced in Customizing Wearable Devices 240

12.4.1 Data Privacy 240

12.4.2 Data Exchange 240

12.4.3 Availability of Resources 241

12.4.4 Storage Capacity 241

12.4.5 Modeling the Relationship Between Acquired Measurement and Diseases 242

12.4.6 Real-Time Processing 242

12.4.7 Intelligence in Medical Care 242

12.5 Conclusion 243

References 244

13 Future of Healthcare: Biomedical Big Data Analysis and IoMT 247
Tamiziniyan G. and Keerthana A.

13.1 Introduction 248

13.2 Big Data and IoT in Healthcare Industry 250

13.3 Biomedical Big Data Types 251

13.3.1 Electronic Health Records 252

13.3.2 Administrative and Claims Data 252

13.3.3 International Patient Disease Registries 252

13.3.4 National Health Surveys 253

13.3.5 Clinical Research and Trials Data 254

13.4 Biomedical Data Acquisition Using IoT 254

13.4.1 Wearable Sensor Suit 254

13.4.2 Smartphones 255

13.4.3 Smart Watches 255

13.5 Biomedical Data Management Using IoT 256

13.5.1 Apache Spark Framework 257

13.5.2 MapReduce 258

13.5.3 Apache Hadoop 258

13.5.4 Clustering Algorithms 259

13.5.5 K-Means Clustering 259

13.5.6 Fuzzy C-Means Clustering 260

13.5.7 DBSCAN 261

13.6 Impact of Big Data and IoMT in Healthcare 262

13.7 Discussions and Conclusions 263

References 264

14 Medical Data Security Using Blockchain With Soft Computing Techniques: A Review 269
Saurabh Sharma, Harish K. Shakya and Ashish Mishra

14.1 Introduction 270

14.2 Blockchain 272

14.2.1 Blockchain Architecture 272

14.2.2 Types of Blockchain Architecture 273

14.2.3 Blockchain Applications 274

14.2.4 General Applications of the Blockchain 276

14.3 Blockchain as a Decentralized Security Framework 277

14.3.1 Characteristics of Blockchain 278

14.3.2 Limitations of Blockchain Technology 280

14.4 Existing Healthcare Data Predictive Analytics Using Soft Computing Techniques in Data Science 281

14.4.1 Data Science in Healthcare 281

14.5 Literature Review: Medical Data Security in Cloud Storage 281

14.6 Conclusion 286

References 287

15 Electronic Health Records: A Transitional View 289
Srividhya G.

15.1 Introduction 289

15.2 Ancient Medical Record, 1600 BC 290

15.3 Greek Medical Record 291

15.4 Islamic Medical Record 291

15.5 European Civilization 292

15.6 Swedish Health Record System 292

15.7 French and German Contributions 293

15.8 American Descriptions 293

15.9 Beginning of Electronic Health Recording 297

15.10 Conclusion 298

References 298

Index 301
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Internet of Medical Things; Artificial Intelligence; Cyber security; Healthcare; Diagnostic tools; Wearables; Data Mining; Decision support; Neural networks; Privacy; Security; Vulnerability; Storage; Tele medicine; Genetic Algorithm; Artificial Neural Network