Principles of Superconducting Quantum Computers

Principles of Superconducting Quantum Computers

Stancil, Daniel D.; Byrd, Gregory T.

John Wiley & Sons Inc

04/2022

384

Dura

Inglês

9781119750727

15 a 20 dias

826

Descrição não disponível.
1 Qubits, Gates, and Circuits 1

1.1 Bits and Qubits . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Circuits in Space vs. Circuits in Time . . . . . . . 1

1.1.2 Superposition . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 No Cloning . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Reversibility . . . . . . . . . . . . . . . . . . . . . 4

1.1.5 Entanglement . . . . . . . . . . . . . . . . . . . . . 4

1.2 Single-Qubit States . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Measurement and the Born Rule . . . . . . . . . . . . . . 6

1.4 Unitary Operations and Single-Qubit Gates . . . . . . . . 7

1.5 Two-Qubit Gates . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.1 Two-Qubit States . . . . . . . . . . . . . . . . . . . 9

1.5.2 Two-Qubit Gates . . . . . . . . . . . . . . . . . . . 11

1.5.3 Controlled-NOT . . . . . . . . . . . . . . . . . . . 13

1.6 Bell State . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 No Cloning, Revisited . . . . . . . . . . . . . . . . . . . . 15

1.8 Example: Deutsch's Problem . . . . . . . . . . . . . . . . 17

1.9 Key Characteristics of Quantum Computing . . . . . . . . 20

1.10 Quantum Computing Systems . . . . . . . . . . . . . . . . 22

1.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Physics of Single Qubit Gates 29

2.1 Requirements for a Quantum Computer . . . . . . . . . . 29

2.2 Single Qubit Gates . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Rotations . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Two State Systems . . . . . . . . . . . . . . . . . . 38

2.2.3 Creating Rotations: Rabi Oscillations . . . . . . . 44

2.3 Quantum State Tomography . . . . . . . . . . . . . . . . 49

2.4 Expectation Values and the Pauli Operators . . . . . . . . 51

2.5 Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

iii

iv CONTENTS

3 Physics of Two Qubit Gates 59

3.1 ?

iSWAP Gate . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Coupled Tunable Qubits . . . . . . . . . . . . . . . . . . . 61

3.3 Fixed-frequency Qubits . . . . . . . . . . . . . . . . . . . 64

3.4 Other Controlled Gates . . . . . . . . . . . . . . . . . . . 66

3.5 Two-qubit States and the Density Matrix . . . . . . . . . 68

3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Superconducting Quantum Computer Systems 73

4.1 Transmission Lines . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 General Transmission Line Equations . . . . . . . 73

4.1.2 Lossless Transmission Lines . . . . . . . . . . . . . 75

4.1.3 Transmission Lines with Loss . . . . . . . . . . . . 77

4.2 Terminated Lossless Line . . . . . . . . . . . . . . . . . . 82

4.2.1 Reflection Coefficient . . . . . . . . . . . . . . . . . 82

4.2.2 Power (Flow of Energy) and Return Loss . . . . . 84

4.2.3 Standing Wave Ratio (SWR) . . . . . . . . . . . . 85

4.2.4 Impedance as a Function of Position . . . . . . . . 86

4.2.5 Quarter Wave Transformer . . . . . . . . . . . . . 88

4.2.6 Coaxial, Microstrip, and Co-planar Lines . . . . . 89

4.3 S Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 Lossless Condition . . . . . . . . . . . . . . . . . . 93

4.3.2 Reciprocity . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Transmission (ABCD) Matrices . . . . . . . . . . . . . . . 94

4.5 Attenuators . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Circulators and Isolators . . . . . . . . . . . . . . . . . . . 100

4.7 Power Dividers/Combiners . . . . . . . . . . . . . . . . . 102

4.8 Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.9 Low-pass Filters . . . . . . . . . . . . . . . . . . . . . . . 111

4.10 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.10.1 Thermal Noise . . . . . . . . . . . . . . . . . . . . 113

4.10.2 Equivalent Noise Temperature . . . . . . . . . . . 116

4.10.3 Noise Factor and Noise Figure . . . . . . . . . . . 117

4.10.4 Attenuators and Noise . . . . . . . . . . . . . . . . 118

4.10.5 Noise in Cascaded Systems . . . . . . . . . . . . . 120

4.11 Low Noise Amplifiers . . . . . . . . . . . . . . . . . . . . . 121

4.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Resonators: Classical Treatment 125

5.1 Parallel Lumped Element Resonator . . . . . . . . . . . . 125

5.2 Capacitive Coupling to a Parallel Lumped-Element Res[1]onator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3 Transmission Line Resonator . . . . . . . . . . . . . . . . 130

5.4 Capacitive Coupling to a Transmission Line Resonator . . 133

5.5 Capacitively-Coupled Lossless Resonators . . . . . . . . . 136

CONTENTS v

5.6 Classical Model of Qubit Readout . . . . . . . . . . . . . 142

5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Resonators: Quantum Treatment 149

6.1 Lagrangian Mechanics . . . . . . . . . . . . . . . . . . . . 149

6.1.1 Hamilton's Principle . . . . . . . . . . . . . . . . . 149

6.1.2 Calculus of Variations . . . . . . . . . . . . . . . . 150

6.1.3 Lagrangian Equation of Motion . . . . . . . . . . . 151

6.2 Hamiltonian Mechanics . . . . . . . . . . . . . . . . . . . 153

6.3 Harmonic Oscillators . . . . . . . . . . . . . . . . . . . . . 153

6.3.1 Classical Harmonic Oscillator . . . . . . . . . . . . 154

6.3.2 Quantum Mechanical Harmonic Oscillator . . . . . 156

6.3.3 Raising and Lowering Operators . . . . . . . . . . 158

6.3.4 Can a Harmonic Oscillator be used as a Qubit? . . 160

6.4 Circuit Quantum Electrodynamics . . . . . . . . . . . . . 162

6.4.1 Classical LC Resonant Circuit . . . . . . . . . . . 162

6.4.2 Quantization of the LC Circuit . . . . . . . . . . . 163

6.4.3 Circuit Electrodynamic Approach for General Cir[1]cuits . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.4.4 Circuit Model for Transmission Line Resonator . . 165

6.4.5 Quantizing a Transmission Line Resonator . . . . 168

6.4.6 Quantized Coupled LC Resonant Circuits . . . . . 169

6.4.7 Schroedinger, Heisenberg, and Interaction Pictures 172

6.4.8 Resonant Circuits and Qubits . . . . . . . . . . . . 175

6.4.9 The Dispersive Regime . . . . . . . . . . . . . . . . 178

6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7 Theory of Superconductivity 183

7.1 Bosons and Fermions . . . . . . . . . . . . . . . . . . . . . 184

7.2 Bloch Theorem . . . . . . . . . . . . . . . . . . . . . . . . 186

7.3 Free Electron Model for Metals . . . . . . . . . . . . . . . 188

7.3.1 Discrete States in Finite Samples . . . . . . . . . . 189

7.3.2 Phonons . . . . . . . . . . . . . . . . . . . . . . . . 191

7.3.3 Debye Model . . . . . . . . . . . . . . . . . . . . . 193

7.3.4 Electron-Phonon Scattering and Electrical Con[1]ductivity . . . . . . . . . . . . . . . . . . . . . . . 194

7.3.5 Perfect Conductor vs. Superconductor . . . . . . . 196

7.4 Bardeen, Cooper and Schrieffer Theory of Superconduc[1]tivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.4.1 Cooper Pair Model . . . . . . . . . . . . . . . . . . 199

7.4.2 Dielectric Function . . . . . . . . . . . . . . . . . . 203

7.4.3 Jellium . . . . . . . . . . . . . . . . . . . . . . . . 204

7.4.4 Scattering Amplitude and Attractive Electron-Electron

Interaction . . . . . . . . . . . . . . . . . . . . . . 208

7.4.5 Interpretation of Attractive Interaction . . . . . . 209

vi CONTENTS

7.4.6 Superconductor Hamiltonian . . . . . . . . . . . . 210

7.4.7 Superconducting Ground State . . . . . . . . . . . 211

7.5 Electrodynamics of Superconductors . . . . . . . . . . . . 215

7.5.1 Cooper Pairs and the Macroscopic Wave Function 215

7.5.2 Potential Functions . . . . . . . . . . . . . . . . . . 216

7.5.3 London Equations . . . . . . . . . . . . . . . . . . 217

7.5.4 London Gauge . . . . . . . . . . . . . . . . . . . . 219

7.5.5 Penetration Depth . . . . . . . . . . . . . . . . . . 220

7.5.6 Flux Quantization . . . . . . . . . . . . . . . . . . 221

7.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 223

7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8 Josephson Junctions 225

8.1 Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.1.1 Reflection from a Barrier . . . . . . . . . . . . . . 226

8.1.2 Finite Thickness Barrier . . . . . . . . . . . . . . . 229

8.2 Josephson Junctions . . . . . . . . . . . . . . . . . . . . . 231

8.2.1 Current and Voltage Relations . . . . . . . . . . . 231

8.2.2 Josephson Junction Hamiltonian . . . . . . . . . . 235

8.2.3 Quantized Josephson Junction Analysis . . . . . . 237

8.3 Superconducting Quantum Interference Devices (SQUIDs) 239

8.4 Josephson Junction Parametric Amplifiers . . . . . . . . . 241

8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

9 Errors and Error Mitigation 245

9.1 NISQ Processors . . . . . . . . . . . . . . . . . . . . . . . 245

9.2 Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . 246

9.3 State Preparation and Measurement Errors . . . . . . . . 248

9.4 Characterizing Gate Errors . . . . . . . . . . . . . . . . . 250

9.5 State Leakage and Suppression using Pulse Shaping . . . 254

9.6 Zero-Noise Extrapolation . . . . . . . . . . . . . . . . . . 257

9.7 Optimized Control using Deep Learning . . . . . . . . . . 260

9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

10 Quantum Error Correction 265

10.1 Review of Classical Error Correction . . . . . . . . . . . . 265

10.1.1 Error Detection . . . . . . . . . . . . . . . . . . . . 266

10.1.2 Error Correction: Repetition Code . . . . . . . . . 267

10.1.3 Hamming Code . . . . . . . . . . . . . . . . . . . . 268

10.2 Quantum Errors . . . . . . . . . . . . . . . . . . . . . . . 269

10.3 Detecting and Correcting Quantum Errors . . . . . . . . . 272

10.3.1 Bit Flip . . . . . . . . . . . . . . . . . . . . . . . . 272

10.3.2 Phase Flip . . . . . . . . . . . . . . . . . . . . . . 274

10.3.3 Correcting Bit and Phase Flips: Shor's 9-qubit Code275

10.3.4 Arbitrary Rotations . . . . . . . . . . . . . . . . . 277

CONTENTS vii

10.4 Stabilizer Codes . . . . . . . . . . . . . . . . . . . . . . . 279

10.4.1 Stabilizers . . . . . . . . . . . . . . . . . . . . . . . 279

10.4.2 Stabilizers for Error Correction . . . . . . . . . . . 280

10.5 Operating on Logical Qubits . . . . . . . . . . . . . . . . 283

10.6 Error Thresholds . . . . . . . . . . . . . . . . . . . . . . . 285

10.6.1 Concatenation of Error Codes . . . . . . . . . . . . 286

10.6.2 Threshold Theorem . . . . . . . . . . . . . . . . . 286

10.7 Surface Codes . . . . . . . . . . . . . . . . . . . . . . . . . 288

10.7.1 Stabilizers . . . . . . . . . . . . . . . . . . . . . . . 289

10.7.2 Error Detection and Correction . . . . . . . . . . . 291

10.7.3 Logical X and Z Operators . . . . . . . . . . . . . 295

10.7.4 Multiple Qubits: Lattice Surgery . . . . . . . . . . 297

10.7.5 CNOT . . . . . . . . . . . . . . . . . . . . . . . . . 301

10.7.6 Single-Qubit Gates . . . . . . . . . . . . . . . . . . 305

10.8 Summary and Further Reading . . . . . . . . . . . . . . . 306

10.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

11 Quantum Logic: Efficient Implementation of Classical

Computations 309

11.1 Reversible Logic . . . . . . . . . . . . . . . . . . . . . . . 310

11.1.1 Reversible Logic Gates . . . . . . . . . . . . . . . . 311

11.1.2 Reversible Logic Circuits . . . . . . . . . . . . . . 313

11.2 Quantum Logic Circuits . . . . . . . . . . . . . . . . . . . 317

11.2.1 Entanglement and Uncomputing . . . . . . . . . . 317

11.2.2 Multi-qubit gates . . . . . . . . . . . . . . . . . . . 319

11.2.3 Qubit topology . . . . . . . . . . . . . . . . . . . . 321

11.3 Efficient Arithmetic Circuits: Adder . . . . . . . . . . . . 322

11.3.1 Quantum Ripple Carry Adder . . . . . . . . . . . . 323

11.3.2 In-place Ripple Carry Adder . . . . . . . . . . . . 326

11.3.3 Carry-Lookahead Adder . . . . . . . . . . . . . . . 329

11.3.4 Adder Comparison . . . . . . . . . . . . . . . . . . 334

11.4 Phase Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 336

11.4.1 Controlled-Z and Controlled-Phase Gates . . . . . 336

11.4.2 Selective Phase Change . . . . . . . . . . . . . . . 339

11.4.3 Phase Logic Gates . . . . . . . . . . . . . . . . . . 341

11.5 Summary and Further Reading . . . . . . . . . . . . . . . 342

11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

12 Some Quantum Algorithms 347

12.1 Computational Complexity . . . . . . . . . . . . . . . . . 347

12.1.1 Quantum Program Run-Time . . . . . . . . . . . . 348

12.1.2 Classical Complexity Classes . . . . . . . . . . . . 349

12.1.3 Quantum Complexity . . . . . . . . . . . . . . . . 350

12.2 Grover's Search Algorithm . . . . . . . . . . . . . . . . . . 351

12.2.1 Grover Iteration . . . . . . . . . . . . . . . . . . . 351

viii CONTENTS

12.2.2 Quantum Implementation . . . . . . . . . . . . . . 354

12.2.3 Generalizations . . . . . . . . . . . . . . . . . . . . 357

12.3 Quantum Fourier Transform . . . . . . . . . . . . . . . . . 358

12.3.1 Frequencies and Quantum-encoded Signals . . . . 358

12.3.2 Inverse QFT . . . . . . . . . . . . . . . . . . . . . 361

12.3.3 Quantum Implementation . . . . . . . . . . . . . . 362

12.3.4 Computational Complexity . . . . . . . . . . . . . 365

12.4 Quantum Phase Estimation . . . . . . . . . . . . . . . . . 365

12.4.1 Quantum Implementation . . . . . . . . . . . . . . 366

12.4.2 Computational Complexity and Other Issues . . . 367

12.5 Shor's Algorithm . . . . . . . . . . . . . . . . . . . . . . . 368

12.5.1 Hybrid Classical-Quantum Algorithm . . . . . . . 368

12.5.2 Finding the Period . . . . . . . . . . . . . . . . . . 370

12.5.3 Computational Complexity . . . . . . . . . . . . . 373

12.6 Variational Quantum Algorithms . . . . . . . . . . . . . . 375

12.6.1 Variational Quantum Eigensolver . . . . . . . . . . 377

12.6.2 Quantum Approximate Optimization Algorithm . 382

12.6.3 Challenges and Opportunities . . . . . . . . . . . . 386

12.7 Summary and Further Reading . . . . . . . . . . . . . . . 387

12.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Quantum computer building; building quantum computers; quantum computer engineering; qubits; qubit gates; single qubit gates; superconducting devices; transmons; xmons; reversible logic; quantum algorithms; quantum fourier transform