Nonparametric Finance

Nonparametric Finance

Klemelae, Jussi

John Wiley & Sons Inc

06/2018

704

Dura

Inglês

9781119409106

15 a 20 dias

1244

Descrição não disponível.
Preface xiii

1 Introduction 1

1.1 Statistical Finance 2

1.2 Risk Management 3

1.3 Portfolio Management 5

1.4 Pricing of Securities 6

Part I Statistical Finance 11

2 Financial Instruments 13

2.1 Stocks 13

2.1.1 Stock Indexes 14

2.1.2 Stock Prices and Returns 15

2.2 Fixed Income Instruments 19

2.2.1 Bonds 19

2.2.2 Interest Rates 20

2.2.3 Bond Prices and Returns 22

2.3 Derivatives 23

2.3.1 Forwards and Futures 23

2.3.2 Options 24

2.4 Data Sets 27

2.4.1 Daily S&P 500 Data 27

2.4.2 Daily S&P 500 and Nasdaq-100 Data 28

2.4.3 Monthly S&P 500, Bond, and Bill Data 28

2.4.4 Daily US Treasury 10 Year Bond Data 29

2.4.5 Daily S&P 500 Components Data 30

3 Univariate Data Analysis 33

3.1 Univariate Statistics 34

3.1.1 The Center of a Distribution 34

3.1.2 The Variance and Moments 37

3.1.3 The Quantiles and the Expected Shortfalls 40

3.2 Univariate Graphical Tools 42

3.2.1 Empirical Distribution Function Based Tools 43

3.2.2 Density Estimation Based Tools 53

3.3 Univariate Parametric Models 55

3.3.1 The Normal and Log-normal Models 55

3.3.2 The Student Distributions 59

3.4 Tail Modeling 61

3.4.1 Modeling and Estimating Excess Distributions 62

3.4.2 Parametric Families for Excess Distributions 65

3.4.3 Fitting the Models to Return Data 74

3.5 Asymptotic Distributions 83

3.5.1 The Central Limit Theorems 84

3.5.2 The Limit Theorems for Maxima 88

3.6 Univariate Stylized Facts 91

4 Multivariate Data Analysis 95

4.1 Measures of Dependence 95

4.1.1 Correlation Coefficients 97

4.1.2 Coefficients of Tail Dependence 101

4.2 Multivariate Graphical Tools 103

4.2.1 Scatter Plots 103

4.2.2 Correlation Matrix: Multidimensional Scaling 104

4.3 Multivariate Parametric Models 107

4.3.1 Multivariate Gaussian Distributions 107

4.3.2 Multivariate Student Distributions 107

4.3.3 Normal Variance Mixture Distributions 108

4.3.4 Elliptical Distributions 110

4.4 Copulas 111

4.4.1 Standard Copulas 111

4.4.2 Nonstandard Copulas 112

4.4.3 Sampling from a Copula 113

4.4.4 Examples of Copulas 116

5 Time Series Analysis 121

5.1 Stationarity and Autocorrelation 122

5.1.1 Strict Stationarity 122

5.1.2 Covariance Stationarity and Autocorrelation 126

5.2 Model Free Estimation 128

5.2.1 Descriptive Statistics for Time Series 129

5.2.2 Markov Models 129

5.2.3 Time Varying Parameter 130

5.3 Univariate Time Series Models 135

5.3.1 Prediction and Conditional Expectation 135

5.3.2 ARMA Processes 136

5.3.3 Conditional Heteroskedasticity Models 143

5.3.4 Continuous Time Processes 154

5.4 Multivariate Time Series Models 157

5.4.1 MGARCH Models 157

5.4.2 Covariance in MGARCH Models 159

5.5 Time Series Stylized Facts 160

6 Prediction 163

6.1 Methods of Prediction 164

6.1.1 Moving Average Predictors 164

6.1.2 State Space Predictors 166

6.2 Forecast Evaluation 170

6.2.1 The Sum of Squared Prediction Errors 170

6.2.2 Testing the Prediction Accuracy 172

6.3 Predictive Variables 175

6.3.1 Risk Indicators 175

6.3.2 Interest Rate Variables 177

6.3.3 Stock Market Indicators 178

6.3.4 Sentiment Indicators 180

6.3.5 Technical Indicators 180

6.4 Asset Return Prediction 182

6.4.1 Prediction of S&P 500 Returns 184

6.4.2 Prediction of 10-Year Bond Returns 187

Part II Risk Management 193

7 Volatility Prediction 195

7.1 Applications of Volatility Prediction 197

7.1.1 Variance and Volatility Trading 197

7.1.2 Covariance Trading 197

7.1.3 Quantile Estimation 198

7.1.4 Portfolio Selection 199

7.1.5 Option Pricing 199

7.2 Performance Measures for Volatility Predictors 199

7.3 Conditional Heteroskedasticity Models 200

7.3.1 GARCH Predictor 200

7.3.2 ARCH Predictor 203

7.4 Moving Average Methods 205

7.4.1 Sequential Sample Variance 205

7.4.2 Exponentially Weighted Moving Average 207

7.5 State Space Predictors 211

7.5.1 Linear Regression Predictor 212

7.5.2 Kernel Regression Predictor 214

8 Quantiles and Value-at-Risk 219

8.1 Definitions of Quantiles 220

8.2 Applications of Quantiles 223

8.2.1 Reserve Capital 223

8.2.2 Margin Requirements 225

8.2.3 Quantiles as a Risk Measure 226

8.3 Performance Measures for Quantile Estimators 227

8.3.1 Measuring the Probability of Exceedances 228

8.3.2 A Loss Function for Quantile Estimation 231

8.4 Nonparametric Estimators of Quantiles 233

8.4.1 Empirical Quantiles 234

8.4.2 Conditional Empirical Quantiles 238

8.5 Volatility Based Quantile Estimation 240

8.5.1 Location-Scale Model 240

8.5.2 Conditional Location-Scale Model 245

8.6 Excess Distributions in Quantile Estimation 258

8.6.1 The Excess Distributions 259

8.6.2 Unconditional Quantile Estimation 261

8.6.3 Conditional Quantile Estimators 269

8.7 Extreme Value Theory in Quantile Estimation 288

8.7.1 The Block Maxima Method 288

8.7.2 Threshold Exceedances 289

8.8 Expected Shortfall 292

8.8.1 Performance of Estimators of the Expected Shortfall 292

8.8.2 Estimation of the Expected Shortfall 293

Part III Portfolio Management 297

9 Some Basic Concepts of Portfolio Theory 299

9.1 Portfolios and Their Returns 300

9.1.1 Trading Strategies 300

9.1.2 The Wealth and Return in the One- Period Model 301

9.1.3 The Wealth Process in the Multiperiod Model 304

9.1.4 Examples of Portfolios 306

9.2 Comparison of Return and Wealth Distributions 312

9.2.1 Mean-Variance Preferences 313

9.2.2 Expected Utility 316

9.2.3 Stochastic Dominance 325

9.3 Multiperiod Portfolio Selection 326

9.3.1 One-Period Optimization 328

9.3.2 The Multiperiod Optimization 329

10 Performance Measurement 337

10.1 The Sharpe Ratio 338

10.1.1 Definition of the Sharpe Ratio 338

10.1.2 Confidence Intervals for the Sharpe Ratio 340

10.1.3 Testing the Sharpe Ratio 343

10.1.4 Other Measures of Risk-Adjusted Return 345

10.2 Certainty Equivalent 346

10.3 Drawdown 347

10.4 Alpha and Conditional Alpha 348

10.4.1 Alpha 349

10.4.2 Conditional Alpha 355

10.5 Graphical Tools of Performance Measurement 356

10.5.1 Using Wealth in Evaluation 356

10.5.2 Using the Sharpe Ratio in Evaluation 359

10.5.3 Using the Certainty Equivalent in Evaluation 364

11 Markowitz Portfolios 367

11.1 Variance Penalized Expected Return 369

11.1.1 Variance Penalization with the Risk-Free Rate 369

11.1.2 Variance Penalization without the Risk-Free Rate 371

11.2 Minimizing Variance under a Sufficient Expected Return 372

11.2.1 Minimizing Variance with the Risk-Free Rate 372

11.2.2 Minimizing Variance without the Risk-Free Rate 374

11.3 Markowitz Bullets 375

11.4 Further Topics in Markowitz Portfolio Selection 380

11.4.1 Estimation 380

11.4.2 Penalizing Techniques 381

11.4.3 Principal Components Analysis 382

11.5 Examples of Markowitz Portfolio Selection 383

12 Dynamic Portfolio Selection 385

12.1 Prediction in Dynamic Portfolio Selection 387

12.1.1 Expected Returns in Dynamic Portfolio Selection 387

12.1.2 Markowitz Criterion in Dynamic Portfolio Selection 390

12.1.3 Expected Utility in Dynamic Portfolio Selection 391

12.2 Backtesting Trading Strategies 393

12.3 One Risky Asset 394

12.3.1 Using Expected Returns with One Risky Asset 394

12.3.2 Markowitz Portfolios with One Risky Asset 401

12.4 Two Risky Assets 405

12.4.1 Using Expected Returns with Two Risky Assets 405

12.4.2 Markowitz Portfolios with Two Risky Assets 409

Part IV Pricing of Securities 419

13 Principles of Asset Pricing 421

13.1 Introduction to Asset Pricing 422

13.1.1 Absolute Pricing 423

13.1.2 Relative Pricing Using Arbitrage 424

13.1.3 Relative Pricing Using Statistical Arbitrage 428

13.2 Fundamental Theorems of Asset Pricing 430

13.2.1 Discrete Time Markets 431

13.2.2 Wealth and Value Processes 432

13.2.3 Arbitrage and Martingale Measures 436

13.2.4 European Contingent Claims 448

13.2.5 Completeness 451

13.2.6 American Contingent Claims 454

13.3 Evaluation of Pricing and Hedging Methods 456

13.3.1 The Wealth of the Seller 456

13.3.2 The Wealth of the Buyer 458

14 Pricing by Arbitrage 459

14.1 Futures and the Put-Call Parity 460

14.1.1 Futures 460

14.1.2 The Put-Call Parity 464

14.1.3 American Call Options 465

14.2 Pricing in Binary Models 466

14.2.1 The One-Period Binary Model 467

14.2.2 The Multiperiod Binary Model 470

14.2.3 Asymptotics of the Multiperiod Binary Model 475

14.2.4 American Put Options 484

14.3 Black-Scholes Pricing 485

14.3.1 Call and Put Prices 485

14.3.2 Implied Volatilities 495

14.3.3 Derivations of the Black-Scholes Prices 498

14.3.4 Examples of Pricing Using the Black-Scholes Model 501

14.4 Black-Scholes Hedging 505

14.4.1 Hedging Errors: Nonsequential Volatility Estimation 506

14.4.2 Hedging Frequency 508

14.4.3 Hedging and Strike Price 511

14.4.4 Hedging and Expected Return 512

14.4.5 Hedging and Volatility 514

14.5 Black-Scholes Hedging and Volatility Estimation 515

14.5.1 Hedging Errors: Sequential Volatility Estimation 515

14.5.2 Distribution of Hedging Errors 517

15 Pricing in Incomplete Models 521

15.1 Quadratic Hedging and Pricing 522

15.2 Utility Maximization 523

15.2.1 The Exponential Utility 524

15.2.2 Other Utility Functions 525

15.2.3 Relative Entropy 526

15.2.4 Examples of Esscher Prices 527

15.2.5 Marginal Rate of Substitution 529

15.3 Absolutely Continuous Changes of Measures 530

15.3.1 Conditionally Gaussian Returns 530

15.3.2 Conditionally Gaussian Logarithmic Returns 532

15.4 GARCH Market Models 534

15.4.1 Heston-Nandi Method 535

15.4.2 The Monte Carlo Method 539

15.4.3 Comparison of Risk-Neutral Densities 541

15.5 Nonparametric Pricing Using Historical Simulation 545

15.5.1 Prices 545

15.5.2 Hedging Coefficients 548

15.6 Estimation of the Risk-Neutral Density 551

15.6.1 Deducing the Risk-Neutral Density from Market Prices 552

15.6.2 Examples of Estimation of the Risk-Neutral Density 552

15.7 Quantile Hedging 554

16 Quadratic and Local Quadratic Hedging 557

16.1 Quadratic Hedging 558

16.1.1 Definitions and Assumptions 559

16.1.2 The One Period Model 562

16.1.3 The Two Period Model 569

16.1.4 The Multiperiod Model 575

16.2 Local Quadratic Hedging 583

16.2.1 The Two Period Model 583

16.2.2 The Multiperiod Model 587

16.2.3 Local Quadratic Hedging without Self-Financing 593

16.3 Implementations of Local Quadratic Hedging 595

16.3.1 Historical Simulation 596

16.3.2 Local Quadratic Hedging Under Independence 599

16.3.3 Local Quadratic Hedging under Dependence 604

16.3.4 Evaluation of Quadratic Hedging 610

17 Option Strategies 615

17.1 Option Strategies 616

17.1.1 Calls, Puts, and Vertical Spreads 616

17.1.2 Strangles, Straddles, Butterflies, and Condors 619

17.1.3 Calendar Spreads 621

17.1.4 Combining Options with Stocks and Bonds 623

17.2 Profitability of Option Strategies 625

17.2.1 Return Functions of Option Strategies 626

17.2.2 Return Distributions of Option Strategies 634

17.2.3 Performance Measurement of Option Strategies 644

18 Interest Rate Derivatives 649

18.1 Basic Concepts of Interest Rate Derivatives 650

18.1.1 Interest Rates and a Bank Account 651

18.1.2 Zero-Coupon Bonds 653

18.1.3 Coupon-Bearing Bonds 656

18.2 InterestRateForwards 659

18.2.1 Forward Zero-Coupon Bonds 659

18.2.2 Forward Rate Agreements 661

18.2.3 Swaps 663

18.2.4 Related Fixed Income Instruments 665

18.3 Interest Rate Options 666

18.3.1 Caplets and Floorlets 666

18.3.2 Caps and Floors 668

18.3.3 Swaptions 668

18.4 Modeling Interest Rate Markets 669

18.4.1 HJM Model 670

18.4.2 Short-Rate Models 671

References 673

Index 681
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
machine learning; quantitative finance; statistical finance; nonparametric functions; machine learning finance applications; finance mathematics; portfolio management; risk management; portfolio selection; option pricing; finance data analysis; practical machine learning; machine learning methods; machine learning equations; nonparametric prediction; statistical finance techniques; statistical finance methods; statistical finance principles; portfolio theory; portfolio performance measurement; asset pricing; hedging; derivatives pricing; Sharpe ratios; data visualization; applied mathematics; nonparametric econometrics; practical nonparametrics; applied nonparametrics; volatility prediction; quantile estimation; graduate finance text; advanced quantitative finance; Markowitz portfolios; pricing models; finance modeling; finance technology; advanced finance methods; machine learning applications; finance for mathematicians; machine learning investment