Network Traffic Engineering

Network Traffic Engineering

Stochastic Models and Applications

Baiocchi, Andrea

John Wiley & Sons Inc

10/2020

816

Dura

Inglês

9781119632436

15 a 20 dias

1236

Descrição não disponível.
Preface xvii Acronyms xix Part I Models for Service Systems 1 1 Introduction 3 1.1 Network Traffic Engineering: What, Why, How 3 1.2 The Art of Modeling 8 1.3 An Example: Delay Equalization 13 1.3.1 Model Setting 14 1.3.2 Analysis by Equations 15 1.3.3 Analysis by Simulation 19 1.3.4 Takeaways 21 1.4 Outline of the Book 21 1.4.1 Plan 21 1.4.2 Use 25 1.4.3 Notation 27 1.5 Further Readings 29 Problems 30 2 Service Systems and Queues 33 2.1 Service System Structure 33 2.2 Arrival and Service Processes 35 2.3 The Queue as a Service System Model 38 2.4 Queues in Equilibrium 40 2.4.1 Queues and Stationary Processes 40 2.4.2 Little's Law 45 2.5 Palm's Distributions for a Queue 49 2.6 The Traffic Process 53 2.7 Performance Metrics 56 2.7.1 Throughput 56 2.7.2 Utilization 59 2.7.3 Loss 59 2.7.4 Delay 61 2.7.5 Age of Information 62 Summary and Takeaways 63 Problems 65 3 Stochastic Models for Network Traffic 71 3.1 Introduction 71 3.2 The Poisson Process 72 3.2.1 Light versus Heavy Tails 78 3.2.2 Inhomogeneous Poisson Process 79 3.2.3 Poisson Process in Multidimensional Spaces 84 3.2.3.1 Displacement 89 3.2.3.2 Mapping 89 3.2.3.3 Thinning 90 3.2.3.4 Distances 91 3.2.3.5 Sums and Products on Point Processes 92 3.2.3.6 Hard Core Processes 94 3.2.4 Testing for Poisson 96 3.3 The Markovian Arrival Process 100 3.4 Renewal Processes 103 3.4.1 Residual Inter-Event Time and Renewal Paradox 108 3.4.2 Superposition of Renewal Processes 110 3.4.3 Alternating Renewal Processes 111 3.4.4 Renewal Reward Processes 113 3.5 Birth-Death Processes 115 3.6 Branching Processes 121 Summary and Takeaways 125 Problems 126 Part II Queues 131 4 Single-Server Queues 133 4.1 Introduction and Notation 133 4.2 The Embedded Markov Chain Analysis of the M?G?1 Queue 134 4.2.1 Queue Length 136 4.2.2 Waiting Time 141 4.2.3 Busy Period and Idle Time 145 4.2.4 Remaining Service Time 148 4.2.5 Output Process 149 4.2.6 Evaluation of the Probabilities {ak}k?? 151 4.3 The M?G?1?K Queue 152 4.3.1 Exact Solution 153 4.3.2 Asymptotic Approximation for Large K 157 4.4 Numerical Evaluation of the Queue Length PDF 166 4.5 A Special Case: the M?M?1 Queue 168 4.6 Optimization of a Single-Server Queue 170 4.6.1 Maximization of Net Profit 171 4.6.2 Minimization of Age of Information 174 4.6.2.1 General Expression of the Average Age of Information 175 4.6.2.2 Minimization of the Age of Information for an M?M?1 Model 177 4.7 The G?M?1 Queue 178 4.8 Matrix-Geometric Queues 185 4.8.1 Quasi Birth-Death (QBD) Processes 186 4.8.2 M?G?1 and G?M?1 Structured Processes 188 4.9 A General Result on Single-Server Queues 192 Summary and Takeaways 194 Problems 195 5 Multi-Server Queues 199 5.1 Introduction 199 5.2 The Erlang Loss System 201 5.2.1 Insensitivity Property of the Erlang Loss System 211 5.2.2 A Finite Population Model 213 5.2.3 Non-Poisson Input Traffic 214 5.2.3.1 Wilkinson's Method 217 5.2.3.2 Fredericks' Method 218 5.2.4 Multi-Class Erlang Loss System 221 5.3 Application of the Erlang Loss Model to Cellular Radio Access Network 224 5.3.1 Cell Dimensioning under Quality of Service Constraints 225 5.3.2 Number of Handoffs in a Connection Lifetime 230 5.3.3 Blocking in a Cell with User Mobility 232 5.3.4 Trade-off between Location Updating and Paging 234 5.3.5 Dimensioning of a Cell with Two Service Classes 236 5.4 The M?M?m Queue 238 5.4.1 Finite Queue Size Model 243 5.4.2 Resource Sharing versus Isolation 244 5.5 Infinite Server Queues 247 5.5.1 Analysis of Message Propagation in a Linear Network 252 Summary and Takeaways 257 Problems 258 6 Priorities and Scheduling 265 6.1 Introduction 265 6.2 Conservation Law 268 6.3 M?G?1 Priority Queueing 272 6.3.1 Non-FCFS Queueing Disciplines 273 6.3.2 Head-of-Line (HOL) Priorities 276 6.3.3 Preempt-Resume Priorities 283 6.3.4 Shortest Job First 284 6.3.5 Shortest Remaining Processing Time 286 6.3.6 The ??C Rule 288 6.4 Processor Sharing 289 6.4.1 The M?G?1 Processor Sharing Model 290 6.4.2 Generalized Processor Sharing 293 6.4.3 Weighted Fair Queueing 298 6.4.4 Credit-Based Scheduling 302 6.4.5 Deficit Round Robin Scheduling 306 6.4.6 Least Attained Service Scheduling 308 6.5 Miscellaneous Scheduling 312 6.5.1 Scheduling on a Radio Link 312 6.5.1.1 Proportional Fairness 312 6.5.1.2 Multi-rate Orthogonal Multiplexing 313 6.5.2 Job Dispatching 318 6.6 Optimal Scheduling 324 6.6.1 Anticipative Systems 325 6.6.2 Server-Sharing, Nonanticipative Systems 325 6.6.3 Non-Server-Sharing, Nonanticipative Systems 326 Summary and Takeaways 327 Problems 327 7 Queueing Networks 331 7.1 Structure of a Queueing Network and Notation 331 7.2 Open Queueing Networks 332 7.2.1 Optimization of Network Capacities 345 7.2.2 Optimal Routing 347 7.2.3 Braess Paradox 350 7.3 Closed Queueing Networks 355 7.3.1 Arrivals See Time Averages (ASTA) 358 7.3.2 Buzen's Algorithm for the Computation of the Normalization Constant 359 7.3.3 Mean Value Analysis 360 7.4 Loss Networks 369 7.4.1 Erlang Fixed-Point Approximation 373 7.4.2 Alternate Routing 378 7.5 Stability of Queueing Networks 381 7.5.1 Definition of Stability 385 7.5.2 Turning a Stochastic Discrete Queueing Network into a Deterministic Fluid Network 387 7.6 Further Readings 390 Appendix 391 Summary and Takeaways 394 Problems 394 8 Bounds and Approximations 399 8.1 Introduction 399 8.2 Bounds for the G?G?1 Queue 401 8.2.1 Mean Value Analysis 404 8.2.2 Output Process 406 8.2.3 Upper and Lower Bounds of the Mean Waiting Time 407 8.2.4 Upper Bound of the Waiting Time Probability Distribution 409 8.3 Bounds for the G?G?m Queue 412 8.4 Approximate Analysis of Isolated G?G Queues 416 8.4.1 Approximations from Bounds 416 8.4.2 Approximation of the Arrival or Service Process 417 8.4.3 Reflected Brownian Motion Approximation 418 8.4.4 Heavy-traffic Approximation 423 8.5 Approximate Analysis of a Network of G?G?1 Queues 426 8.5.1 Superposition of Flows 427 8.5.2 Flow Through a Queue 428 8.5.3 Bernoulli Splitting of a Flow 428 8.5.4 Putting Pieces Together: The Decomposition Method 429 8.5.5 Bottleneck Approximation for Closed Queueing Networks 442 8.6 Fluid Models 443 8.6.1 Deterministic Fluid Model 444 8.6.2 From Fluid to Diffusion Model 452 8.6.3 Stochastic Fluid Model 456 8.6.4 Steady-State Analysis 459 8.6.4.1 Infinite Buffer Size (K = ?) 462 8.6.4.2 Loss Probability 463 8.6.5 First Passage Times 466 8.6.6 Application of the Stochastic Fluid Model to a Multiplexer with ON-OFF Traffic Sources 468 Summary and Takeaways 471 Problems 472 Part III Networked Systems and Protocols 477 9 Multiple Access 479 9.1 Introduction 479 9.2 Slotted ALOHA 482 9.2.1 Analysis of the Naive Slotted ALOHA 483 9.2.2 Finite Population Slotted ALOHA 487 9.2.3 Stabilized Slotted ALOHA 494 9.3 Pure ALOHA with Variable Packet Times 499 9.4 Carrier Sense Multiple Access (CSMA) 504 9.4.1 Features of the CSMA Protocol 505 9.4.1.1 Clear Channel Assessment 505 9.4.1.2 Persistence Policy 506 9.4.1.3 Retransmission Policy 507 9.4.2 Finite Population Model of CSMA 509 9.4.3 Multi-Packet Reception CSMA 513 9.4.3.1 Multi-Packet Reception 1-Persistent CSMA with Poisson Traffic 515 9.4.3.2 Multi-Packet Reception Nonpersistent CSMA with Poisson Traffic 519 9.4.4 Stability of CSMA 523 9.4.5 Delay Analysis of Stabilized CSMA 531 9.5 Analysis of the WiFi MAC Protocol 534 9.5.1 Outline of the IEEE 802.11 DCF Protocol 534 9.5.2 Model of CSMA/CA 538 9.5.2.1 The Back-off Process 540 9.5.2.2 Virtual Slot Time 543 9.5.2.3 Saturation Throughput 545 9.5.2.4 Service Times of IEEE 802.11 DCF 549 9.5.2.5 Correlation between Service Times 554 9.5.3 Optimization of Back-off Parameters 556 9.5.3.1 Maximization of Throughput 556 9.5.3.2 Minimization of Service Time Jitter 561 9.5.4 Fairness of CSMA/CA 565 9.6 Further Readings 570 Appendix 572 Summary and Takeaways 573 Problems 575 10 Congestion Control 579 10.1 Introduction 579 10.2 Congestion Control Architecture in the Internet 583 10.3 Evolution of Congestion Control in the Internet 587 10.3.1 TCP Reno 588 10.3.1.1 TCP Congestion Control Operations 589 10.3.1.2 NewReno 593 10.3.1.3 TCP Congestion Control with SACK 594 10.3.1.4 Congestion Window Validation 595 10.3.2 TCP CUBIC 596 10.3.3 TCP Vegas 598 10.3.4 Data Center TCP (DCTCP) 601 10.3.4.1 Marking at the Switch 602 10.3.4.2 ECN-Echo at the Receiver 603 10.3.4.3 Controller at the Sender 603 10.3.5 Bottleneck Bandwidth and RTT (BBR) 604 10.3.5.1 Delivery Rate Estimate 607 10.3.5.2 StartUp and Drain 608 10.3.5.3 ProbeBW 609 10.3.5.4 ProbeRTT 610 10.3.5.5 Pseudo-code of BBR Algorithm 610 10.4 Traffic Engineering with TCP 611 10.5 Fluid Model of a Single TCP Connection Congestion Control 614 10.5.1 Classic TCP with Fixed Capacity Bottleneck Link 615 10.5.2 Classic TCP with Variable Capacity Bottleneck Link 617 10.5.2.1 Discretization of the Evolution Equations 625 10.5.2.2 Accuracy of the Fluid Approximation of TCP 627 10.5.3 Application to Wireless Links 630 10.5.3.1 Random Capacity 630 10.5.3.2 TCP over Cellular Link 632 10.6 Fluid Model of Multiple TCP Connections Congestion Control 635 10.6.1 Negligible Buffering at the Bottleneck 635 10.6.2 Classic TCP with Drop Tail Buffer at the Bottleneck 637 10.6.3 Classic TCP with AQM at the Bottleneck 638 10.6.4 Data Center TCP with FIFO Buffer at the Bottleneck 639 10.7 Fairness and Congestion Control 642 10.8 Network Utility Maximization (NUM) 645 10.9 Challenges to TCP 652 10.9.1 Fat-Long Pipes 653 10.9.2 Wireless Channels 655 10.9.3 Bufferbloat 656 10.9.4 Interaction with Applications 658 Appendix 659 Summary and Takeaways 664 Problems 665 11 Quality-of-Service Guarantees 669 11.1 Introduction 669 11.2 Deterministic Service Guarantees 670 11.2.1 Arrival Curves 673 11.2.2 Service Curves 677 11.2.3 Performance Bounds 681 11.2.4 Regulators 683 11.2.5 Network Calculus 688 11.2.5.1 Single Node Analysis 689 11.2.5.2 End-to-End Analysis 692 11.3 Stochastic Service Guarantees 703 11.3.1 Multiplexing with Marginal Buffer Size 703 11.3.2 Multiplexing with Non-Negligible Buffer Size 711 11.3.3 Effective Bandwidth 714 11.3.3.1 Definition of the Effective Bandwidth 714 11.3.3.2 Properties of the Effective Bandwidth 715 11.3.3.3 Effective Bandwidth of a Markov Source 716 11.3.4 Network Analysis and Dimensioning 721 11.4 Further Readings 727 Appendix 728 Summary and Takeaways 732 Problems 733 A Refresher of Probability, Random Variables, and Stochastic Processes 735 A.1 Probability 735 A.2 Random Variables 737 A.3 Transforms of Probability Distribution Functions 739 A.4 Inequalities and Limit Theorems 744 A.4.1 Markov Inequality 744 A.4.2 Chebychev Inequality 745 A.4.3 Jensen Inequality 746 A.4.4 Chernov Bound 746 A.4.5 Union Bound 747 A.4.6 Central Limit Theorem (CLT) 747 A.5 Stochastic Processes 748 A.6 Markov Chains 749 A.6.1 Classification of States 750 A.6.2 Recurrence 751 A.6.3 Visits to a State 754 A.6.4 Asymptotic Behavior and Steady State 756 A.6.5 Absorbing Markov Chains 762 A.6.6 Continuous-Time Markov Processes 763 A.6.7 Sojourn Times in Process States 765 A.6.8 Reversibility 766 A.6.9 Uniformization 768 A.7 Wiener Process (Brownian Motion) 769 A.7.1 Wiener Process with an Absorbing Barrier 771 A.7.2 Wiener Process with a Reflecting Barrier 772 References 775 Index 789
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Traffic theory; engineering applications of traffic and queuing theory; performance evaluation of networked service systems; performance modeling; multiple random access; LTE; Wi-Fi; congestion control in the Internet; Quality of Service