Multivariate Analysis

Multivariate Analysis

Taylor, Charles C.; Mardia, Kanti V.; Kent, John T.

John Wiley & Sons Inc

07/2024

592

Dura

Inglês

9781118738023

15 a 20 dias

Epigraph xvii

Preface to the Second Edition xix

Preface to the First Edition xxi

Acknowledgments from First Edition xxv

Notation, Abbreviations, and Key Ideas xxvii

1 Introduction 1

1.1 Objects and Variables 1

1.2 Some Multivariate Problems and Techniques 1

1.3 The Data Matrix 7

1.4 Summary Statistics 8

1.5 Linear Combinations 12

1.6 Geometrical Ideas 14

1.7 Graphical Representation 15

1.8 Measures of Multivariate Skewness and Kurtosis 20

Exercises and Complements 22

2 Basic Properties of Random Vectors 25

Introduction 25

2.1 Cumulative Distribution Functions and Probability Density Functions 25

2.2 Population Moments 27

2.3 Characteristic Functions 31

2.4 Transformations 32

2.5 The Multivariate Normal Distribution 34

2.6 Random Samples 41

2.7 Limit Theorems 42

Exercises and Complements 44

3 Nonnormal Distributions 49

3.1 Introduction 49

3.2 Some Multivariate Generalizations of Univariate Distributions 49

3.3 Families of Distributions 52

3.4 Insights into Skewness and Kurtosis 57

3.5 Copulas 60

Exercises and Complements 65

4 Normal Distribution Theory 71

4.1 Introduction and Characterization 71

4.2 Linear Forms 73

4.3 Transformations of Normal Data Matrices 75

4.4 The Wishart Distribution 77

4.5 The Hotelling T2 Distribution 83

4.6 Mahalanobis Distance 85

4.7 Statistics Based on the Wishart Distribution 88

4.8 Other Distributions Related to the Multivariate Normal 92

Exercises and Complements 93

5 Estimation 101

Introduction 101

5.1 Likelihood and Sufficiency 101

5.2 Maximum-likelihood Estimation 106

5.3 Robust Estimation of Location and Dispersion for Multivariate Distributions 112

5.4 Bayesian Inference 117

Exercises and Complements 119

6 Hypothesis Testing 125

6.1 Introduction 125

6.2 The Techniques Introduced 127

6.3 The Techniques Further Illustrated 134

6.4 Simultaneous Confidence Intervals 142

6.5 The Behrens-Fisher Problem 144

6.6 Multivariate Hypothesis Testing: Some General Points 145

6.7 Nonnormal Data 146

6.8 Mardia's Nonparametric Test for the Bivariate Two-sample Problem 149

Exercises and Complements 151

7 Multivariate Regression Analysis 159

7.1 Introduction 159

7.2 Maximum-likelihood Estimation 160

7.3 The General Linear Hypothesis 162

7.4 Design Matrices of Degenerate Rank 165

7.5 Multiple Correlation 167

7.6 Least-squares Estimation 171

7.7 Discarding of Variables 174

Exercises and Complements 178

8 Graphical Models 183

8.1 Introduction 183

8.2 Graphs and Conditional Independence 184

8.3 Gaussian Graphical Models 188

8.4 Log-linear Graphical Models 195

8.5 Directed and Mixed Graphs 202

Exercises and Complements 204

9 Principal Component Analysis 207

9.1 Introduction 207

9.2 Definition and Properties of Principal Components 207

9.3 Sampling Properties of Principal Components 221

9.4 Testing Hypotheses About Principal Components 227

9.5 Correspondence Analysis 230

9.6 Allometry - Measurement of Size and Shape 237

9.7 Discarding of Variables 240

9.8 Principal Component Regression 241

9.9 Projection Pursuit and Independent Component Analysis 244

9.10 PCA in High Dimensions 247

Exercises and Complements 249

10 Factor Analysis 259

10.1 Introduction 259

10.2 The Factor Model 260

10.3 Principal Factor Analysis 264

10.4 Maximum-likelihood Factor Analysis 266

10.5 Goodness-of-fit Test 269

10.6 Rotation of Factors 270

10.7 Factor Scores 275

10.8 Relationships Between Factor Analysis and Principal Component Analysis 276

10.9 Analysis of Covariance Structures 277

Exercises and Complements 277

11 Canonical Correlation Analysis 281

11.1 Introduction 281

11.2 Mathematical Development 282

11.3 Qualitative Data and Dummy Variables 288

11.4 Qualitative and Quantitative Data 290

Exercises and Complements 293

12 Discriminant Analysis and Statistical Learning 297

12.1 Introduction 297

12.2 Bayes' Discriminant Rule 299

12.3 The Error Rate 300

12.4 Discrimination Using the Normal Distribution 304

12.5 Discarding of Variables 312

12.6 Fisher's Linear Discriminant Function 314

12.7 Nonparametric Distance-based Methods 319

12.8 Classification Trees 323

12.9 Logistic Discrimination 332

12.10 Neural Networks 336

Exercises and Complements 342

13 Multivariate Analysis of Variance 355

13.1 Introduction 355

13.2 Formulation of Multivariate One-way Classification 355

13.3 The Likelihood Ratio Principle 356

13.4 Testing Fixed Contrasts 358

13.5 Canonical Variables and A Test of Dimensionality 359

13.6 The Union Intersection Approach 369

13.7 Two-way Classification 370

Exercises and Complements 375

14 Cluster Analysis and Unsupervised Learning 379

14.1 Introduction 379

14.2 Probabilistic Membership Models 380

14.3 Parametric Mixture Models 384

14.4 Partitioning Methods 386

14.5 Hierarchical Methods 391

14.6 Distances and Similarities 397

14.7 Grouped Data 404

14.8 Mode Seeking 406

14.9 Measures of Agreement 408

Exercises and Complements 412

15 Multidimensional Scaling 419

15.1 Introduction 419

15.2 Classical Solution 421

15.3 Duality Between Principal Coordinate Analysis and Principal Component Analysis 428

15.4 Optimal Properties of the Classical Solution and Goodness of Fit 429

15.5 Seriation 436

15.6 Nonmetric Methods 438

15.7 Goodness of Fit Measure: Procrustes Rotation 440

15.8 Multisample Problem and Canonical Variates 443

Exercises and Complements 444

16 High-dimensional Data 449

16.1 Introduction 449

16.2 Shrinkage Methods in Regression 451

16.3 Principal Component Regression 455

16.4 Partial Least Squares Regression 457

16.5 Functional Data 465

Exercises and Complements 473

A Matrix Algebra 475

A.1 Introduction 475

A.2 Matrix Operations 478

A.3 Further Particular Matrices and Types of Matrices 483

A.4 Vector Spaces, Rank, and Linear Equations 485

A.5 Linear Transformations 488

A.6 Eigenvalues and Eigenvectors 488

A.7 Quadratic Forms and Definiteness 495

A.8 Generalized Inverse 497

A.9 Matrix Differentiation and Maximization Problems 499

A.10 Geometrical Ideas 501

B Univariate Statistics 505

B.1 Introduction 505

B.2 Normal Distribution 505

B.3 Chi-squared Distribution 506

B.4 F and Beta Variables 506

B.5 t Distribution 507

B.6 Poisson Distribution 507

C R commands and Data 509

C.1 Basic R Commands Related to Matrices 509

C.2 R Libraries and Commands Used in Exercises and Figures 510

C.3 Data Availability 511

D Tables 513

References and Author Index 523

Index 543
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
multivariate analysis; basic multivariate normal theory; multiple regression; structural equations models; directional data; multidimensional scaling; factor analysis; discriminant analysis; cluster analysis; Principal component analysis