Lignocellulose Bioconversion Through White Biotechnology

Lignocellulose Bioconversion Through White Biotechnology

Chandel, Anuj Kumar

John Wiley & Sons Inc

10/2022

432

Dura

Inglês

9781119735953

15 a 20 dias

964

Descrição não disponível.
List of Contributors xiii

Preface xx

1 White Biotechnology: Impeccable Role in Sustainable Bioeconomy 1
Anuj Kumar Chandel, Jesus J. Ascencio, Akhilesh K. Singh, Ruly T. Hilares, Lucas Ramos, Rishi Gupta, Yeruva Thirupathaiah, and Sridevi Jagavati

1.1 Introduction 1

1.2 Biomass Feedstock: Types and Composition 3

1.3 Biomass Pretreatment: An Overview and State- of- the- Art 4

1.4 Lignocellulosic Sugar Production 5

1.5 Production of Ethanol and Biodiesel 8

1.6 Drop- in Renewable Biofuels: Green Hydrocarbons 11

1.7 Global Scenario of the Biofuel Industry 12

1.8 Economic Outcomes 14

1.9 Sustainability and Biorefinery 16

1.10 Conclusion 16

Acknowledgement 17

References 17

2 Lignocellulose Feedstock Availability, Types of Feedstocks, and New Designer Crops 24
V. Guadalupe Bustos, R. Daniel Trujillo, C. Linda M. Martinez, and S. Rodolfo Torres

2.1 Introduction 24

2.2 Lignocellulosic Biomass 25

2.2.1 Plant Cell Wall 27

2.3 Biomass Conversion Pathways 29

2.3.1 Lignocellulosic Biomass Pretreatment 29

2.3.2 Enzymatic Hydrolysis 32

2.3.3 Conversion of Lignocellulosic Components 33

2.3.3.1 Biofuels 33

2.3.3.2 Pectins 34

2.3.3.3 Cellulose Nanofibers 35

2.4 Different Types of Biomass Available in Mexico 36

2.4.1 Coconut Shells 36

2.4.2 Sugarcane Bagasse 38

2.4.2.1 Applications of Sugarcane Bagasse 39

2.4.3 Tequilana Agave 39

2.4.3.1 Heart or Pina 39

2.4.3.2 Leaves 40

2.4.3.3 Conditioning of Agave tequilana Leaves to Obtain Fermentable Sugars 40

2.5 Conclusion 42

References 42

3 Lignocellulose Bioconversion: Technical Aspects and New Developments 55
J Gamboa- Santos and A Alzamendi

3.1 Introduction 55

3.2 Lignocellulosic (LC) Biomass Composition 56

3.2.1 Cellulose 56

3.2.2 Hemicellulose 56

3.2.3 Lignin 57

3.3 Biorefinery Concept in the Era of Sustainable Circular Economy 57

3.4 Biorefinery Treatments 58

3.4.1 Pretreatments 58

3.4.1.1 Physical Methods 60

3.4.1.2 Thermal Methods 62

3.4.1.3 Chemical Methods 63

3.4.1.4 Biological Methods 64

3.5 New Innovative Technologies and Developments 67

3.5.1 Development of Green/Environmentally Friendly Methods 68

3.5.1.1 Green Solvents 69

3.5.2 Biological New Developments 71

3.5.2.1 Eco- friendly Bacterial Bioconversion 72

3.5.2.2 Fungal Depolymerization 72

3.5.2.3 Bacterial Depolymerization 73

3.5.3 Combined Pretreatment Methods 73

3.6 Final Remarks 74

References 75

4 An Evaluation of Steam Explosion Pretreatment to Enhance the Digestibility of Lignocellulosic Biomass 83
Bhima Bhukya and Praveen K. Keshav

4.1 Introduction 83

4.2 Mode of Action and Types of Steam Explosion Pretreatment 86

4.3 Factors Affecting the Steam Explosion Pretreatment 87

4.3.1 Effect on Particle Size of Biomass 87

4.3.2 Effect of Moisture Content 88

4.3.3 Effect of Combined Severity Factor 88

4.3.4 Effect of Addition of Catalyst 89

0005376972.indd 6 08-22-2022 19:25:16

4.4 Various Post- pretreatment Approaches to Improve Saccharification of Steam Exploded Biomass 91

4.5 Summary and Conclusions 91

Acknowledgements 93

References 93

5 The Role of Plant Cell Wall Degrading Enzymes in Biorefinery Development 99
Katarina R. Mihajlovski and Marija D. Milic

5.1 Introduction 99

5.2 Lignocellulosic Biomass- the Plant Cell Wall 100

5.3 The Cell Wall Degrading Enzymes 101

5.4 Cellulases in a Biorefinery Development 102

5.4.1 Commercial Cellulase Cocktails for Lignocellulosic Biomass Degradation 104

5.4.2 Commercial Cellulase Preparation for Various Industrial Uses 112

5.4.2.1 Laundry and Detergent Industry 116

5.4.2.2 Textile Industry 116

5.4.2.3 Pulp and Paper Industry 117

5.4.2.4 Bakery Industry 118

5.4.2.5 Beverages 119

5.4.2.6 Edible Oils 120

5.4.2.7 Animal Feed Industry 120

5.5 Microbial Fermentations for Cellulase Production 121

5.6 Conclusion 124

Acknowledgement 127

References 127

6 Microbial Production of Biobased Chemicals: Improvements and Challenges 136
Luana Assis Serra, Debora Trichez, Clara Vida G. C. Carneiro, Leticia M. Mallmann Ferreira, Paula F. Franco, and Joao Ricardo M. Almeida

6.1 Introduction 136

6.2 Challenges in Developing Microorganisms for Lignocellulosic Sugar Utilization 138

6.3 Relevant Biobased Chemicals from Biomass 141

6.4 Microbial Products from Sugar Fermentation 145

6.4.1 Organic Acids 145

6.4.1.1 Adipic Acid 145

6.4.1.2 Furan- 2,5- dicarboxylic Acid (C6H4O5) 150

6.4.1.3 Itaconic Acid 151

6.4.1.4 Lactic Acid and Polylactic Acid 152

6.4.1.5 Levulinic Acid 153

6.4.1.6 Succinic Acid 154

6.4.2 Diols 155

6.4.2.1 1,3- Propanediol (PDO) 155

6.4.2.2 Propylene Glycol 156

6.4.3 Polyols 157

6.4.3.1 Sorbitol 157

6.4.3.2 Xylitol 158

6.4.4 Alcohols 159

6.4.4.1 Butanol 159

6.4.4.2 Ethanol 160

6.4.5 Aldehydes 162

6.4.5.1 Furfural 162

6.4.6 Polyesters 163

6.4.6.1 Polyhydroxyalkanoates (PHAs) 163

6.4.7 Xylenes 164

6.4.7.1 Para- xylene 164

6.5 Conclusion 165

References 165

7 Molecular Biology Based Innovations in Lignocellulose Biorefinery 177
Nilesh Kumar Sharma and Mohit Bibra

7.1 Introduction 177

7.2 Lignocellulosic Biomass Potential 178

7.3 Biomass Pretreatment 178

7.3.1 Mechanical Pretreatment 179

7.3.2 Chemical Pretreatment 179

7.3.3 Biological Pretreatment 183

7.3.4 Other Methods 183

7.4 Different Approaches to Enhance Xylose Utilization 183

7.4.1 Random Mutagenesis 184

7.4.1.1 Evolutionary Adaptation 184

7.4.1.2 Strain Hybridization 185

7.4.2 Site- specific Engineering 187

7.4.2.1 Targeting Sugar Transporters 187

7.4.2.2 Targeting Xylose Metabolic Pathway 189

7.4.2.3 Targeting Non- oxidative Pathway 191

7.4.2.4 Engineering Non- conventional Yeast 191

7.5 Conclusion and Future Prospects 192

References 192

8 Recent Developments in Synthetic Biology and their Role in Uplifting Lignocellulose Bioeconomy 203
Nayanika Sarkar, Adhinarayan Vamsidhar, Pratham Khaitan, and Samuel Jacob

8.1 Introduction 203

8.1.1 Synthetic Biology Routes for the Delignification of Lignocellulosic Biomass for Biorefinery 204

8.1.2 The Key Players of Delignification 205

8.1.3 Case Studies 206

8.1.3.1 Fungi as Expression Host 206

8.1.3.2 Yeast as Expression Host 207

8.1.3.3 Bacteria as Expression Host 209

8.2 Synthetic Biology Routes for Cellulose Degradation in Lignocellulosic Biomass 209

8.2.1 Cellulose- a Major Plant Component 209

8.2.2 Synthetic Biology for Hydrolysis of Cellulose 210

8.2.3 Degradation using Nanoparticles 213

8.3 Synthetic Biology Routes for the Production of Low- value and High- value Alcohols 213

8.3.1 Low- value Alcohols 214

8.3.1.1 Ethanol 214

8.3.1.2 Methanol 214

8.3.2 High- value Alcohols 215

8.3.2.1 Xylitol 215

8.3.2.2 Butanol 215

8.4 Conclusion 217

References 217

9 Lignocellulose Bioconversion through Chemical Methods, Platform Chemicals, and New Chemicals 221
Manoela Martins, Patricia F. Avila, Marcos Fellipe da Silva, Allan Henrique Felix de Melo, Alberto M. Moura Lopes, and Rosana Goldbeck

9.1 Introduction 221

9.2 Lignocellulosic Biomass 222

9.2.1 Chemical Composition of Lignocellulosic Biomass 222

9.2.1.1 Cellulose 222

9.2.1.2 Hemicellulose 222

9.2.1.3 Lignin 223

9.2.2 Biomass Types and Recalcitrance Properties 223

9.3 Pretreatment and Fractionation of Lignocellulosic Materials 223

9.3.1 Chemical Pretreatments 225

9.3.1.1 Alkaline Pretreatment 225

9.3.1.2 Acidic Pretreatment 225

9.3.1.3 Ionic Liquids 225

9.3.1.4 Wet Oxidation 226

9.3.2 Physicochemical Pretreatment 226

9.3.2.1 Steam Explosion 226

9.3.2.2 Liquid Hot Water 227

9.3.2.3 Ammonia Fiber/Freeze Explosion (AFEX), Ammonia Recycle Percolation (ARP) and Soaking Aqueous Ammonia (SAA) 227

9.3.2.4 Supercritical Fluid 228

9.3.3 Fractionating Treatments of Lignocellulosic Compounds 228

9.4 Enzymatic Hydrolysis of Lignocellulosic Biomass 229

9.4.1 Cellulases 229

9.4.2 Ligninolytic Enzymes 230

9.4.3 Pectic Enzymes 231

9.4.4 Mannases 231

9.4.5 Xylanases 231

9.4.5.1 Backbone Enzymes 231

9.4.5.2 Side Chain Enzymes 232

9.4.5.3 Accessory Enzymes 232

9.4.6 Enzyme Synergism 232

9.5 Biorefinery- Biobased Chemicals Platform 233

9.5.1 Contextualization- Bioeconomic and Biorefinery 233

9.5.2 Bioethanol 234

9.5.3 Other Value- added Bioproducts Obtained from Lignocellulosic Biomass 235

9.5.3.1 Nanocellulose 236

9.5.3.2 Prebiotics 237

9.5.3.3 Organic Acids 237

9.5.3.4 Sweeteners 239

9.5.3.5 Biogas 239

9.5.3.6 Vanillin 240

Acknowledgment 240

References 240

10 Lignin Conversion through Biological and Chemical Routes 248
Marcos H. L. Silveira, Alain E. M. Mera, Anuj Kumar Chandel, and Eduardo A. Ribeiro

10.1 Introduction 248

10.1.1 Lignin Availability 249

10.1.2 Lignin Structure 249

10.1.3 Chemical Transformation Routes 252

10.1.4 Lignin Conversion by Biological Routes 253

10.1.5 Potential Chemicals from Lignin 255

10.2 Conclusions 255

Acknowledgements 257

References 258

11 Downstream Processing in Lignocellulose Conversion: Current Challenges and Future Practices 261
Kelly J. Dussan, Debora D. V. Silva, Ana F. M. Costa, Luana C. Grangeiro, and Ellen C. Giese

11.1 Introduction 261

11.2 Challenges and Perspectives Encompassing Circular Economy 263

11.3 Improving Lignocellulose Conversion for Future Bioeconomy 267

11.4 Industry 4.0: Advanced Technologies for the Biorefinery Platform 274

11.5 Conclusions 280

References 280

12 Scale- up Process Challenges in Lignocellulosic Biomass Conversion and Possible Solutions to Overcome the Hurdles 289
Henrique M. Baudel, Danielle Matias Rodrigues, Eduardo Diebold, and Anuj Kumar Chandel

12.1 Introduction 289

12.2 Lignocellulosic Conversion Processes and Engineering: Challenges and Possible Solutions 293

12.2.1 Steam Pretreatment: Issues and Potential Problems 297

12.3 Ethanol from Eucalyptus Wastes 304

12.4 Ethanol and Xylitol Production from Sprinkled Sugarcane Straw 307

12.5 Conclusions and Remarks 309

References 310

13 Techno- economic Analysis of Bioconversion of Woody Biomass to Ethanol 312
Deepak Kumar, Anuj Kumar Chandel, and Lakhveer Singh

13.1 Introduction 312

13.2 Techno- economic Analysis 313

13.3 Bioconversion of Woody Biomass to Ethanol 315

13.4 Techno- economic Analysis of Woody Biomass to Ethanol 320

13.5 Integrated TEA and life cycle assessment (LCA) 323

13.6 Conclusions 325

References 326

14 Environmental Indicators, Life Cycle Analysis and Ecological Perspective on Biomass Conversion 330
Andreza A. Longati, Ediane S. Alves, Simone C. Myoshi, Andrew M. Elias, Felipe F. Furlan, Everson A. Miranda, and Roberto C. Giordano

14.1 Introduction 330

14.1.1 The Role of Biomass in a Sustainable Economy 330

14.2 Life Cycle Assessment (LCA) 334

14.3 New Brazilian National Biofuel Policy (RenovaBio): A Case Study for Sugarcane Distilleries 338

14.4 Process Systems Engineering Tools for Biomass LCA 341

14.5 Retro Techno- economic Environmental Analysis 343

Acknowledgements 344

References 345

15 Green Consumerism and Role in Uplifting Lignocellulose Bioeconomy 351
BS Dhanya

15.1 Introduction 351

15.2 Lignocellulosic Biomass and its Contribution in Bioeconomy 352

15.2.1 Lignocellulosic Biomass 352

15.2.2 Life Cycle Assessment (LCA) of Lignocellulosic Biomass 355

15.3 Lignocellulosic Bioeconomy and its Sustainability in the World 356

15.3.1 Lignocellulose Bioeconomy in Malaysia 357

15.3.2 Lignocellulose Bioeconomy in Japan 358

15.3.3 Lignocellulose Bioeconomy in European Countries 359

15.4 Green Consumerism and its Upsurge in the Lignocellulosic Bioeconomy 359

15.4.1 Wide Scope in Green Consumerism 360

15.4.2 Government Subsidies 360

15.4.3 Eco- friendly Competitive Advantage 361

15.4.4 Corporate Social Responsibility 361

15.5 Challenges in Green Consumerism 361

15.6 Future Prospects 363

15.7 Conclusion 363

References 364

16 Going Green: Achieving the Circular Economy with Sustainable Biorefineries, Process Scale- Up, and Fermentation Optimization 367
Sreenivas R. Ravella, David N. Bryant, Phil J. Hobbs, Ana Winters, David J. Warren- Walker, and Joe Gallagher

16.1 Introduction 367

16.2 Sustainable Biorefineries and Supply Chain Aspects 368

16.3 Pretreatment of Biomass Using Pilot- Scale Steam Explosion Rigs 370

16.3.1 Steam Explosion (SE) of Miscanthus and Methane Production from Miscanthus as an Example 370

16.3.2 Heat Requirement of Biorefineries 371

16.4 Taguchi Methodology for Process Optimization 372

16.5 Process Automation 372

16.5.1 Automation 372

16.5.1.1 Mobile Phone and Real- time Control 374

16.5.1.2 BrewMonitor (R) System 374

16.5.2 Process Optimization and Artificial Intelligence 374

16.5.3 Biogas Pilot Plant 376

16.5.4 Sensors 376

16.5.5 Process Control Configuration with LabVIEW and NI Data Acquisition (DAQ) Devices 378

16.5.5.1 Connect Sensors and Signals to a DAQ Device 378

16.5.6 Rule- based Control Structure 378

16.5.7 Pilot Plant Data 379

16.5.8 LabVIEW Application for Laboratory- scale, Pilot- scale and Industrial Fermentations 379

16.5.8.1 LabVIEW Datalogging and Supervisory Control Module 380

16.5.9 Advantages of LabVIEW in Automation and Monitoring Commercial Plants 380

16.6 Microbial Adaptation, Evolution, and Diversity for Process Optimization 381

16.6.1 Microbiology of Volatile Fatty Acids (VFAs) Production in AD 383

16.7 Final Remarks and Conclusions 387

16.7.1 Main Conclusions 388

Acknowledgements 388

References 388

Index 398
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Lignocellulose feedstock; Lignocellulose bioconversion; biomass pretreatment methods; Plant cell wall degrading enzymes; fermenting microorganisms; cellulosic sugars utilization; lignocellulose-based products; scale-up operations; biorefineries