DC Microgrids

DC Microgrids

Advances, Challenges, and Applications

Padmanaban, Sanjeevikumar; Almakhles, Dhafer; Bhaskar, Mahajan Sagar; Gupta, Nikita

John Wiley & Sons Inc

07/2022

480

Dura

Inglês

9781119777168

15 a 20 dias

453

Descrição não disponível.
Preface xv

1 On the DC Microgrids Protection Challenges, Schemes, and Devices - A Review 1
Mohammed H. Ibrahim, Ebrahim A. Badran and Mansour H. Abdel-Rahman

1.1 Introduction 2

1.2 Fault Characteristics and Analysis in DC Microgrid 4

1.3 DC Microgrid Protection Challenges 7

1.3.1 Low Inductance of DC System 7

1.3.2 Fast Rise Rate of DC Fault Current 7

1.3.3 Difficulties of Overcurrent (O/C) Relays Coordination 7

1.3.4 Fault Detection and Location 8

1.3.5 Arcing Fault Detection and Clearing 10

1.3.6 Short-Circuit (SC) Analysis and Change of Its Level 13

1.3.7 Non-Suitability of AC Circuit Breakers (ACCBs) 16

1.3.8 Inverters Low Fault Current Capacity 17

1.3.9 Constant Power Load (CPL) Impact 17

1.3.10 Grounding 18

1.4 DC Microgrid Protection Schemes 21

1.4.1 The Differential Protection-Based Strategies 25

1.4.2 The Voltage-Based Protection Strategies 27

1.4.3 The Adaptive Overcurrent Protection Schemes 28

1.4.4 Impedance-Based Protection Strategy (Distance Protection) 29

1.4.5 Non-Conventional Protection Schemes (Data-Based Protection Scheme) 32

1.5 DC Microgrid Protective Devices (PDs) 34

1.5.1 Z-Source DC Circuit Breakers (ZSB) 35

1.5.2 Hybrid DC Circuit Breakers (HCB) 38

1.5.3 Solid State Circuit Breakers (SSCBs) 42

1.5.4 Arc Fault Current Interrupter (AFCI) 45

1.5.5 Fuses 47

1.6 Conclusions 48

References 50

2 Control Strategies for DC Microgrids 63
Bhabani Kumari Choudhury and Premalata Jena

2.1 Introduction: The Concept of Microgrids 63

2.1.1 DC Microgrids 64

2.2 Introduction: The Concept of Control Strategies 65

2.2.1 Basic Control Schemes for DC MGs 66

2.2.1.1 Centralized Control Strategy 66

2.2.1.2 Decentralized Controller 67

2.2.1.3 Distributed Control 68

2.2.2 Multilevel Control 68

2.2.2.1 Primary Control 69

2.2.2.2 Secondary Control 73

2.2.2.3 Tertiary Control 74

2.2.2.4 Current Sharing Loop 74

2.2.2.5 Microgrid Central Controller (MGCC) 74

2.3 Control Strategies for DGs in DC MGs 76

2.3.1 Control Strategy for Solar Cell in DC MGs 76

2.3.1.1 Control Strategy for Wind Energy in DC MGs 77

2.3.1.2 Control Strategy for Fuel Cell in DC MGs 77

2.3.1.3 Control Strategy for Energy Storage System in DC MGs 78

2.4 Conclusions and Future Scopes 79

References 80

3 Protection Issues in DC Microgrids 83
Bhabani Kumari Choudhury and Premalata Jena

3.1 Introduction 83

3.1.1 Protection Challenge 84

3.1.1.1 Arcing and Fault Clearing Time 84

3.1.1.2 Stability 85

3.1.1.3 Multiterminal Protections 85

3.1.1.4 Ground Fault Challenges 85

3.1.1.5 Communication Challenges 86

3.1.2 Effect of Constant Power Loads (CPLs) 86

3.2 Fault Detection in DC MGs 87

3.2.1 Principles and Methods of Fault Detection 87

3.2.1.1 Voltage Magnitude-Based Detection 87

3.2.1.2 Current Magnitude-Based Detection 88

3.2.1.3 Impedance Estimation Method 88

3.2.1.4 Power Probe Unit (PPU) Method 88

3.3 Fault Location 92

3.3.1 Passive Approach 92

3.3.1.1 Traveling Wave-Based Scheme 92

3.3.1.2 Differential Fault Location 93

3.3.1.3 Local Measurement-Based Fault Location 93

3.3.2 Active Approach for Fault Location 94

3.3.2.1 Injection-Based Fault Location 94

3.4 Islanding Detection (ID) 94

3.4.1 Types of IDSs 95

3.4.2 Passive Detection Schemes (PDSs) for DC MGs 96

3.4.3 Active Detection Schemes (ADS) for DC MGs 96

3.5 Protection Coordination Strategy 97

3.6 Conclusion and Future Research Scopes 97

References 97

4 Dynamic Energy Management System of Microgrid Using AI Techniques: A Comprehensive & Comparative Study 101
Priyadarshini Balasubramanyam and Vijay K. Sood

Nomenclature 102

4.1 Introduction 103

4.1.1 Background and Motivation 103

4.1.2 Prior Work 103

4.1.3 Contributions 104

4.1.4 Layout of the Chapter 104

4.2 Problem Statement 104

4.3 Mathematical Modelling of Microgrid 105

4.3.1 Cost Functions 106

4.3.1.1 Diesel Generator 106

4.3.1.2 Solar Generation 106

4.3.1.3 Wind Generation Unit 106

4.3.1.4 Energy Storage System (ESS) 107

4.3.1.5 Transaction with Utility 108

4.3.2 Objective Function 109

4.3.3 Constraints 109

4.4 Optimization Algorithm 110

4.4.1 Heuristic-Based Genetic Algorithm (GA) 110

4.4.2 Pattern Search Algorithm (PSA) 111

4.5 Results 113

4.6 Conclusion 118

References 118

5 Energy Management Strategies Involving Energy Storage in DC Microgrid 121
S. K. Rai, H. D. Mathur and Sanjeevikumar Padmanaban

5.1 Introduction 121

5.2 Literature Review 123

5.2.1 Classic Approaches of EMS 124

5.2.2 Meta-Heuristic Approach of EMS 129

5.2.3 Artificial Intelligence Approach of EMS 134

5.2.4 Model Predictive, Stochastic and Robust Programming Approach of EMS 139

5.3 Case Study 142

5.3.1 Energy Management System 144

5.3.2 Objective Functions 144

5.3.3 Result and Discussion 145

5.4 Conclusion 151

References 151

6 A Systematic Approach for Solar and Hydro Resource Assessment for DC Microgrid Applications 159
Sanjay Kumar, Nikita Gupta, Vineet Kumar and Tarlochan Kaur

6.1 Introduction 160

6.1.1 Micro Hydro and Solar PV 162

6.1.2 Renewable Energy for Rural Electrification in Indian Perspective 162

6.1.3 Solar Resource Assessment 163

6.1.4 Hydro Resource Assessment 166

6.1.5 Demand Assessment 167

6.2 Methodology 168

6.2.1 Data Collection 168

6.2.1.1 Meteorological and Geographical Data 168

6.2.1.2 Discharge Data for Hydro Potential Estimation 168

6.3 Result and Discussion 172

6.3.1 ANN Architecture 172

6.3.2 Hydro Resource Estimation 176

6.4 Conclusion 178

References 179

7 Secondary Control Based on the Droop Technique for Power Sharing 183
Waner W.A.G. Silva, Thiago R. de Oliveira, Rhonei P. Santos and Danilo I. Brandao

7.1 Introduction 184

7.2 Voltage Deviation and Power Sharing Issues in Droop Technique 186

7.2.1 Approaches for Correcting Power and Current Sharing 190

7.2.2 Hybrid Secondary Control: Distributed Power Sharing and Decentralized Voltage Restoration 197

7.2.2.1 Dynamics and Convergence of the Power Sharing Correction 200

7.2.2.2 Communication Delays in Consensus-Based Algorithm 203

7.2.2.3 Secondary Control Modeling 204

7.2.2.4 Computational and Experimental Validation 208

7.2.3 Secondary Level Control Based on Unique Voltage-Shifting (vs) 215

7.2.3.1 Power Sharing and Average Voltage Convergence Analysis 218

7.2.3.2 Secondary Control Level Modeling 223

7.2.3.3 Computational and Experimental Validation 226

7.3 Design and Implementation of the Communication System 230

7.4 Conclusions 234

References 235

8 Dynamic Analysis and Reduced-Order Modeling Techniques for Power Converters in DC Microgrid 241
Divya Navamani J., Lavanya A., Jagabar Sathik, M.S. Bhaskar and Vijayakumar K.

8.1 Introduction 242

8.2 Need of Dynamic Analysis for Power Converters 243

8.3 Various Modeling Techniques 245

8.3.1 Analysis from Modeling Method 249

8.4 Reduce-Order Modeling 253

8.4.1 Faddeev Leverrier Algorithm 253

8.4.1.1 Procedure for Faddeev Leverrier Algorithm 253

8.4.1.2 Illustrative Example with Switched- Inductor-Based Quadratic Boost Converter 254

8.4.2 Order Reduction of Transfer Function 257

8.4.3 Techniques for Model Order Reduction 257

8.4.4 Pole Clustering Method 258

8.4.5 Procedure for Improved Pole Clustering Technique 258

8.4.5.1 Computation of Denominator Polynomial of Lower-Dimensional Model 259

8.4.5.2 Computation of Numerator Polynomial of Lower-Dimensional Model 261

8.4.5.3 Design of Controller 261

8.5 Illustrative Example with the Power Converter 262

8.5.1 Derivation of the Denominator 263

8.5.2 Derivation of the Numerator 264

8.6 Controllers for Power Converter 265

8.6.1 Need of Controller 265

8.6.2 Types of Controller 265

8.7 Conclusion 267

References 267

9 Matrix Converter and Its Probable Applications 273
Khaliqur Rahman

9.1 Introduction 274

9.2 Classification of Matrix Converter 275

9.2.1 Classical Matrix Converter 277

9.2.2 Sparse Matrix Converter 277

9.2.3 Very Sparse Matrix Converter 277

9.2.4 Ultra-Sparse Matrix Converter 278

9.3 Problems Associated with the MC and the Drives 280

9.3.1 Commutation Issues 280

9.3.2 Modulation Issues 280

9.3.3 Common-Mode Voltage and Common-Mode Current Issues 280

9.3.4 Protection Issues 281

9.4 Control Techniques 282

9.5 Basic Components of the Matrix Converter Fed Drive System 283

9.6 Industrial Applications of Matrix Converter 289

9.7 Summary 294

References 294

10 Multilevel Converters and Applications 299
P. Prem, Jagabar Sathik and K.T. Maheswari

10.1 Introduction 300

10.2 Multilevel Inverters 301

10.2.1 Multilevel Inverters vs. Two-Level Inverters 301

10.2.2 Advantages of Multilevel Converters Based on Waveforms 303

10.2.3 Advantages of Multilevel Converters Based on Topology 304

10.3 Traditional Multilevel Inverter Topologies 305

10.3.1 Diode Clamped Multilevel Inverter 305

10.3.1.1 Features of DCMLI 308

10.3.1.2 Advantages of DCMLI 308

10.3.1.3 Disadvantages of DCMLI 308

10.3.1.4 Applications of DCMLI 309

10.3.2 Flying Capacitor Multilevel Inverter 309

10.3.2.1 Features of FCMLI 312

10.3.2.2 Advantages of FCMLI 312

10.3.2.3 Disadvantages of FCMLI 312

10.3.2.4 Applications of FCMLI 313

10.3.3 Cascaded H Bridge Multilevel Inverter 313

10.3.3.1 Features of CHBMLI 315

10.3.3.2 Advantages of CHBMLI 315

10.3.3.3 Disadvantages of CHBMLI 316

10.3.3.4 Applications of CHBMLI 316

10.4 Advent of Active Neutral Point Clamped Converter 316

10.4.1 Comparison with Traditional Topologies 319

10.4.2 Advantages of ANPC MLI 320

10.4.3 Disadvantages of ANPC MLI 320

10.5 Conclusion 322

References 322

11 A Quasi Z-Source (QZS) Network-Based Quadratic Boost Converter Suitable for Photovoltaic-Based DC Microgrids 325
Amir Ghorbani Esfahlan and Kazem Varesi

11.1 Introduction 326

11.2 Proposed Converter 328

11.3 Steady-State Analyses 331

11.4 Comparison with Other Structures 335

11.5 Converter Analyzes in Discontinuous Conduction Mode (DCM) 335

11.6 Simulation Results 342

11.7 Real Voltage Gain and Losses Analyzes 346

11.8 Dynamic Behavior of the Proposed Converter 352

11.9 The Maximum Power Point Tracking (MPPT) 354

11.10 Conclusions 356

11.11 Appendix 357

References 358

12 Research on Protection Strategy Utilizing Full-Scale Transient Fault Information for DC Microgrid Based on Integrated Control and Protection Platform 361
Shi Bonian and Sun Gang

12.1 Introduction 362

12.2 Topological Structure and Grounding Model of Studied Microgrid 363

12.2.1 Proposed DC Distribution Network Topology 363

12.2.2 Neutral Grounding Model 366

12.2.2.1 Grounding Position Selection 366

12.2.2.2 Grounding Mode Selection 366

12.3 Fault Characteristics of DC Microgrid 367

12.3.1 DC Unipolar Fault Characteristics 368

12.3.2 DC Bipolar Fault Characteristics 370

12.4 DC Microgrid Protection Strategy 373

12.4.1 Protection Zone Division and Protection Configuration 373

12.4.1.1 Protection Zone Division 373

12.4.1.2 Protection Configuration 375

12.4.2 Integrated Control and Protection Platform 376

12.4.3 Fault Isolation and Recovery Strategy Utilizing Full-Scale Transient Fault Information 378

12.4.3.1 Unipolar Fault Isolation and Recovery of DC Line/Bus 378

12.4.3.2 Bipolar Fault Isolation and Recovery of DC Line/Bus 380

12.5 Simulation Verification 384

12.5.1 Verification under DC Unipolar Fault 386

12.5.1.1 Metal Short Circuit Fault of DC Line 386

12.5.1.2 Unipolar Fault with High Transition Resistance 386

12.5.1.3 High Resistance Unipolar Fault with Parallel Resistance Switching Strategy 386

12.5.2 Verification under DC Bipolar Fault 390

12.6 Conclusion 394

References 395

13 A Decision Tree-Based Algorithm for Fault Detection and Section Identification of DC Microgrid 397
Shankarshan Prasad Tiwari and Ebha Koley

Acronyms 398

Symbols 398

13.1 Introduction 398

13.2 DC Test Microgrid System 400

13.3 Overview of Decision Tree-Based Proposed Scheme 401

13.4 DC Microgrid Protection Using Decision Tree Classifier 403

13.5 Performance Evaluation 404

13.5.1 Mode Detection Module 408

13.5.2 Fault Detection/Classification 409

13.5.3 Section Identification 409

13.5.4 Comparative Analysis of the Proposed Scheme with other DC Microgrid Protection Techniques 412

13.6 Conclusion 416

References 417

14 Passive Islanding Detection Method Using Static Transfer Switch for Multi-DGs Microgrid 421
Rahul S. Somalwar and S. G. Kadwane

14.1 Introduction 422

14.1.1 Technical Challenges of Microgrid and Benefits 424

14.1.2 System with Multi-DGs 425

14.1.3 Power Sharing Methods 426

14.1.3.1 Conventional Droop Control Method 426

14.2 Islanding 427

14.2.1 Challenges with Islanding 427

14.2.2 Different Standards for Microgrid 428

14.2.3 Islanding Detection Methods 428

14.3 Static Transfer Switch (STS) 431

14.3.1 Simulation Results of STS 432

14.4 Proposed Scheme of Islanding 435

14.4.1 Proposed PV System 435

14.4.2 Mathematical Analysis of Harmonic Extraction 436

14.5 Flow Chart 437

14.6 Simulation Results 438

14.7 Experimental Results 441

14.8 Conclusion 445

References 446

Index 449
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Power Electronics; DC microgrid; DC; microgrid; modelling; control; simulation; emulation of microgrids; multi-terminal architecture; renewable energy; AI applications for DC microgrids; high-gain converter; high power converter; power electronic interface; fault diagnosis; DC breaker; protection relays; EV; wireless charging; electric vehicles; grid standards; energy management; energy storage; ESS; IoT architectures for DC microgrids; cyber-physical security; low-power wireless technologies; Energy Storage Device; Supercapacitor; Energy Density; Power Density; Hybrid Supercapacitor device; Energy storage landscape; electrochemical storage; Thermal energy storage; Phase Change Material (PCM); Simulation; Melting; Solidification; Numerical model