Applications of Metal-Organic Frameworks and Their Derived Materials

Applications of Metal-Organic Frameworks and Their Derived Materials

Ahamed, Mohd Imran; Inamuddin; Asiri, Abdullah M.; Boddula, Rajender

John Wiley & Sons Inc

06/2020

496

Dura

Inglês

9781119650980

15 a 20 dias

826

Descrição não disponível.
Preface xiii

1 Application of MOFs and Their Derived Materials in Sensors 1
Yong Wang, Chang Yin and Qianfen Zhuang

1.1 Introduction 1

1.2 Application of MOFs and Their Derived Materials in Sensors 3

1.2.1 Optical Sensor 3

1.2.1.1 Colorimetric Sensor 3

1.2.1.2 Fluorescence Sensor 7

1.2.1.3 Chemiluminescent Sensor 11

1.2.2 Electrochemical Sensor 13

1.2.2.1 Amperometric Sensor 13

1.2.2.2 Impedimetric, Electrochemiluminescence, and Photoelectrochemical Sensor 16

1.2.3 Field-Effect Transistor Sensor 19

1.2.4 Mass-Sensitive Sensor 21

1.3 Conclusion 22

Acknowledgments 23

References 23

2 Applications of Metal-Organic Frameworks (MOFs) and Their Derivatives in Piezo/Ferroelectrics 33
H. Manjunatha, K. Chandra Babu Naidu, N. Suresh Kumar, Ramyakrishna Pothu and Rajender Boddula

2.1 Introduction 34

2.1.1 Brief Introduction to Piezo/Ferroelectricity 34

2.2 Fundamentals of Piezo/Ferroelectricity 34

2.3 Metal-Organic Frameworks for Piezo/Ferroelectricity 40

2.4 Ferro/Piezoelectric Behavior of Various MOFs 40

2.5 Conclusion 52

References 53

3 Fabrication and Functionalization Strategies of MOFs and Their Derived Materials "MOF Architecture" 63
Demet Ozer

3.1 Introduction 63

3.2 Fabrication and Functionalization of MOFs 65

3.2.1 Metal Nodes 65

3.2.2 Organic Linkers 68

3.2.3 Secondary Building Units 76

3.2.4 Synthesis Methods 77

3.2.4.1 Hydrothermal and Solvothermal Method 77

3.2.4.2 Microwave Synthesis 78

3.2.4.3 Electrochemical Method 80

3.2.4.4 Mechanochemical Synthesis 81

3.2.4.5 Sonochemical (Ultrasonic Assisted) Method 81

3.2.4.6 Diffusion Method 82

3.2.4.7 Template Method 82

3.2.5 Synthesis Strategies 83

3.3 MOF Derived Materials 89

3.4 Conclusion 90

References 90

4 Application of MOFs and Their Derived Materials in Molecular Transport 101
Arka Bagchi, Partha Saha, Arunima Biswas and SK Manirul Islam

4.1 Introduction 102

4.2 MOFs as Nanocarriers for Membrane Transport 102

4.2.1 MIL-89 103

4.2.2 MIL-88A 103

4.2.3 MIL-100 104

4.2.4 MIL-101 104

4.2.5 MIL-53 104

4.2.6 ZIF-8 104

4.2.7 Zn-TATAT 105

4.2.8 BioMOF-1 (Zn) 105

4.2.9 UiO (Zr) 105

4.3 Conclusion 106

References 106

5 Role of MOFs as Electro/-Organic Catalysts 109
Manorama Singh, Ankita Rai, Vijai K. Rai, Smita R. Bhardiya and Ambika Asati

5.1 What Is MOFs 109

5.2 MOFs as Electrocatalyst in Sensing Applications 111

5.3 MOFs as Organic Catalysts in Organic Transformations 114

5.4 Conclusion and Future Prospects 115

References 116

6 Application of MOFs and Their Derived Materials in Batteries 121
Rituraj Dutta and Ashok Kumar

6.1 Introduction 122

6.2 Metal-Organic Frameworks 126

6.2.1 Classification and Properties of Metal-Organic Frameworks 127

6.2.2 Potential Applications of MOFs 130

6.2.3 Synthesis of MOFs 133

6.3 Polymer Electrolytes 135

6.3.1 Historical Perspectives and Classification of Polymer Electrolytes 136

6.3.2 MOF Based Polymer Electrolytes 139

6.4 Ionic Liquids 142

6.4.1 Properties of Ionic Liquids 143

6.4.2 Ionic Liquid Incorporated MOF 145

6.5 Ion Transport in Polymer Electrolytes 147

6.5.1 General Description of Ionic Conductivity 147

6.5.2 Models for Ionic Transport in Polymer Electrolytes 148

6.5.3 Impedance Spectroscopy and Ionic Conductivity Measurements 152

6.5.4 Concept of Mismatch and Relaxation 155

6.5.5 Scaling of ac Conductivity 156

6.6 IL Incorporated MOF Based Composite Polymer Electrolytes 157

6.7 Conclusion and Perspectives 166

References 168

7 Fine Chemical Synthesis Using Metal-Organic Frameworks as Catalysts 177
Aasif Helal

7.1 Introduction 177

7.2 Oxidation Reaction 179

7.2.1 Epoxidation 179

7.2.2 Sulfoxidation 181

7.2.3 Aerobic Oxidation of Alcohols 182

7.3 1,3-Dipolar Cycloaddition Reaction 183

7.4 Transesterification Reaction 183

7.5 C-C Bond Formation Reactions 184

7.5.1 Heck Reactions 184

7.5.2 Sonogashira Coupling 186

7.5.3 Suzuki Coupling 186

7.6 Conclusion 187

References 187

8 Application of Metal Organic Framework and Derived Material in Hydrogenation Catalysis 193
Tejaswini Sahoo, Jagannath Panda, Jnana Ranjan Sahu and Rojalin Sahu

8.1 Introduction 193

8.1.1 The Active Centers in Parent MOF Materials 195

8.1.2 The Active Centers in MOF Catalyst 195

8.1.3 Metal Nodes 196

8.2 Hydrogenation Reactions 197

8.2.1 Hydrogenation of Alpha-Beta Unsaturated Aldehyde 197

8.2.2 Hydrogenation of Cinnamaldehyde 198

8.2.3 Hydrogenation of Nitroarene 199

8.2.4 Hydrogenation of Nitro Compounds 201

8.2.5 Hydrogenation of Benzene 202

8.2.6 Hydrogenation of Quinoline 205

8.2.7 Hydrogenation of Carbon Dioxide 206

8.2.8 Hydrogenation of Aromatics 207

8.2.9 Hydrogenation of Levulinic Acid 207

8.2.10 Hydrogenation of Alkenes and Alkynes 208

8.2.11 Hydrogenation of Phenol 210

8.3 Conclusion 210

References 211

9 Application of MOFs and Their Derived Materials in Solid-Phase Extraction 219
Adrian Gutierrez-Serpa, Ivan Taima-Mancera, Jorge Pasan, Juan H. Ayala and Veronica Pino

9.1 Solid-Phase Extraction 220

9.1.1 Materials in SPE 223

9.2 MOFs and COFs in Miniaturized Solid-Phase Extraction (?SPE) 225

9.3 MOFs and COFs in Miniaturized Dispersive Solid-Phase Extraction (D-?SPE) 232

9.4 MOFs and COFs in Magnetic-Assisted Miniaturized Dispersive Solid-Phase Extraction (m-D-?SPE) 239

9.5 Concluding Remarks 249

Acknowledgments 249

References 249

10 Anticancer and Antimicrobial MOFs and Their Derived Materials 263
Nasser Mohammed Hosny

10.1 Introduction 263

10.2 Anticancer MOFs 264

10.2.1 MOFs as Drug Carriers 264

10.2.2 MOFs in Phototherapy 269

10.3 Antibacterial MOFs 272

10.4 Antifungal MOFs 278

References 280

11 Theoretical Investigation of Metal-Organic Frameworks and Their Derived Materials for the Adsorption of Pharmaceutical and Personal Care Products 287
Jagannath Panda, Satya Narayan Sahu, Tejaswini Sahoo, Biswajit Mishra, Subrat Kumar Pattanayak and Rojalin Sahu

11.1 Introduction 288

11.2 General Synthesis Routes 290

11.2.1 Hydrothermal Synthesis 295

11.2.2 Solvothermal Synthesis of MOFs 296

11.2.3 Room Temperature Synthesis 296

11.2.4 Microwave Assisted Synthesis 296

11.2.5 Mechanochemical Synthesis 297

11.2.6 Electrochemical Synthesis 297

11.3 Postsynthetic Modification in MOF 297

11.4 Computational Method 297

11.5 Results and Discussion 299

11.5.1 Binding Behavior Between MIL-100 With the Adsorbates (Diclofenac, Ibuprofen, Naproxen, and Oxybenzone) 299

11.6 Conclusion 303

References 304

12 Metal-Organic Frameworks and Their Hybrid Composites for Adsorption of Volatile Organic Compounds 313
Shella Permatasari Santoso, Artik Elisa Angkawijaya, Vania Bundjaja, Felycia Edi Soetaredjo and Suryadi Ismadji

12.1 Introduction 314

12.2 VOCs and Their Potential Hazards 315

12.2.1 Other Sources of VOCs 319

12.3 VOCs Removal Techniques 320

12.4 Fabricated MOF for VOC Removal 324

12.4.1 MIL Series MOFs 325

12.4.2 Isoreticular MOFs 327

12.4.2.1 Adsorption Comparison of the Isoreticular MOFs 330

12.4.3 NENU Series MOFs 332

12.4.4 MOF-5, Eu-MOF, and MOF-199 333

12.4.5 Amine-Impregnated MIL-100 334

12.4.6 Biodegradable MOFs MIL-88 Series 335

12.4.7 Catalytic MOFs 335

12.4.8 Photo-Degradating MOFs 336

12.4.9 Some Other Studied MOFs 337

12.5 MOF Composites 338

12.5.1 MIL-101 Composite With Graphene Oxide 338

12.5.2 MIL-101 Composite With Graphite Oxide 338

12.6 Generalization Adsorptive Removal of VOCs by MOFs 340

12.7 Simple Modeling the Adsorption 340

12.7.1 Thermodynamic Parameters 340

12.7.2 Dynamic Sorption Methods 341

12.8 Factor Affecting VOCs Adsorption 344

12.8.1 Breathing Phenomena 344

12.8.2 Activation of MOFs 345

12.8.3 Applied Pressure 346

12.8.4 Relative Humidity 347

12.8.5 Breakthrough Conditions 347

12.8.6 Functional Group of MOFs 347

12.8.7 Concentration, Molecular Size, and Type of VOCs 348

12.9 Future Perspective 349

References 350

13 Application of Metal-Organic Framework and Their Derived Materials in Electrocatalysis 357
Gopalram Keerthiga, Peramaiah Karthik and Bernaurdshaw Neppolian

List of Abbreviations 358

13.1 Introduction 358

13.2 Perspective Synthesis of MOF , and Their Derived Materials 360

13.3 MOF for Hydrogen Evolution Reaction 362

13.4 MOF for Oxygen Evolution Reaction 363

13.5 MOF for Oxygen Reduction Reaction 365

13.6 MOF for CO2 Electrochemical Reduction Reaction 366

13.6.1 Electrosynthesis of MOF for CO2 Reduction 366

13.6.2 Composite Electrodes as MOF for CO2 Reduction 367

13.6.3 Continuous Flow Reduction of CO2 369

13.6.4 CO2 Electrochemical Reduction in Ionic Liquid 369

13.7 MOF for Electrocatalytic Sensing 370

13.8 Electrocatalytic Features of MOF 371

13.9 Conclusion 372

Acknowledgment 372

References 372

14 Applications of MOFs and Their Composite Materials in Light-Driven Redox Reactions 377
Elizabeth Rojas-Garcia, Jose M. Barrera-Andrade, Elim Albiter, A. Marisela Maubert and Miguel A. Valenzuela

14.1 Introduction 378

14.1.1 MOFs as Photocatalysts 381

14.1.2 Charge Transfer Mechanisms 382

14.1.3 Methods of Synthesis 385

14.2 Pristine MOFs and Their Application in Photocatalysis 387

14.2.1 Group 4 Metallic Clusters 387

14.2.2 Groups 8, 9, and 10 Metallic Clusters 393

14.2.3 Group 11 Metallic Clusters 393

14.2.4 Group 12 Metallic Clusters 403

14.3 Metal Nanoparticles-MOF Composites and Their Application in Photocatalysis 413

14.3.1 Ag-MOF Composites 415

14.3.2 Au-MOF Composites 417

14.3.3 Cu-MOF Composites 417

14.3.4 Pd-MOF Composites 418

14.3.5 Pt-MOF Composites 419

14.4 Semiconductor-MOF Composites and Their Application in Photocatalysis 421

14.4.1 TiO2-MOF Composites 422

14.4.2 Graphitic Carbon Nitride-MOF Composites 426

14.4.3 Bismuth-Based Semiconductors 429

14.4.4 Reduced Graphene Oxide-MOF Composites 430

14.4.5 Silver-Based Semiconductors 436

14.4.6 Other Semiconductors 438

14.5 MOF-Based Multicomponent Composites and Their Application in Photocatalysis 442

14.5.1 Semiconductor-Semiconductor-MOF Composites 442

14.5.2 Semiconductor-Metal-MOF Composites 443

14.6 Conclusions 446

References 448

Index 463
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
mofs; metal-atoms encapsulated carbons; synthesizing metal oxides; tunable chemical properties; metal-organic frameworks; development specialists; industry professionals; material community; nanomaterials; faculty members; synthesis strategies