Advances in Remote Sensing for Natural Resource Monitoring

Advances in Remote Sensing for Natural Resource Monitoring

Pandey, Prem C.; Sharma, Laxmi K.

John Wiley and Sons Ltd

02/2021

528

Dura

Inglês

9781119615972

15 a 20 dias

1144

Descrição não disponível.
List of Abbreviations xix

List of Contributors xxix

List of Editors xxxv

Preface xxxvii

Section I General Section 1

1 Introduction to Natural Resource Monitoring Using Remote Sensing Technology 3
Prem Chandra Pandey and Laxmi Kant Sharma

1.1 Introduction 3

References 6

2 Spectroradiometry: Types, Data Collection, and Processing 9
Prem Chandra Pandey, Manish Kumar Pandey, Ayushi Gupta, Prachi Singh, and Prashant K. Srivastava

2.1 Introduction 9

2.2 Literature Review 10

2.3 The Types of Spectroradiometry 12

2.3.1 Spectroradiometry 13

2.3.2 Photometry and Colorimetry 13

2.4 Principle of the Spectroradiometer 13

2.5 Radiance Measurement 16

2.5.1 Factors Affecting Spectral Reflectance Measurements 17

2.5.2 Data Processing 18

2.5.2.1 Radiometric Calibration 18

2.5.2.2 Reflectance/Transmittance 19

2.5.2.3 Radiance/Irradiance/Emissivity 20

2.5.2.4 1st Derivative 20

2.5.2.5 2nd Derivative 20

2.5.2.6 Parabolic Correction 20

2.5.2.7 Other Methods 21

2.6 Data Collection 21

2.7 Generation of the Metadata 21

2.7.1 Continuum Removal 22

2.8 Applications of ASD in Agriculture and Forestry 23

2.9 Future Importance, Limitations, and Recommendations 23

Acknowledgment 24

References 24

3 Geometric-Optical Modeling of Bidirectional Reflectance Distribution Function for Trees and Forest Stands 28
Nour El Islam Bachari, Salim Lamine, and Khaled Meharrar

3.1 Introduction 28

3.2 Model Description 29

3.2.1 Sunlit Surfaces 31

3.2.2 Shaded Surfaces 31

3.2.3 Forest Stand Modeling 32

3.3 General Shape of the Apparent Luminance 33

3.4 Simulation and Discussion 35

References 39

Section II Vegetation Resource Monitoring (Forest and Agriculture) 43

4 Mapping Stand Age of Indonesian Rubber Plantation Using Fully Polarimetric L-Band Synthetic Aperture Radar 45
Bambang H. Trisasongko

4.1 Introduction 45

4.2 Methodology 46

4.2.1 Test Site and Dataset 46

4.2.2 Processing 47

4.3 Results and Discussion 48

4.3.1 Scattering Behavior 48

4.3.2 Classification Using Backscatter Coefficients 50

4.3.3 Classification Using Model-Based Decomposition 51

4.3.4 The Role of Combining Datasets 51

4.3.5 The Best Subset 52

4.4 Conclusion 55

Acknowledgments 55

References 55

5 Responses of Multi-Frequency Remote Sensing to Forest Biomass 58
Suman Sinha, A. Santra, Laxmi Kant Sharma, Anup Kumar Das, C. Jeganathan, Shiv Mohan, S.S. Mitra, and M.S. Nathawat

5.1 Background 58

5.1.1 Optical Remote Sensing 59

5.1.2 Microwave Remote Sensing 62

5.1.3 LiDAR Remote/Sensing 63

5.1.4 Synergic Use of Multi-Sensor Data 65

5.2 A Case Study in the Mixed Tropical Deciduous Forest of India 66

5.2.1 Study Area 66

5.2.2 Datasets 67

5.2.3 Methodology 67

5.2.4 Results 67

5.2.5 Conclusion 67

5.3 Uncertainties and Future Scope of Research in Biomass Estimation 71

5.3.1 Summary 71

Acknowledgment 72

References 72

6 Crop Water Requirements Analysis Using Geoinformatics Techniques in the Water-Scarce Semi-Arid Watershed 81
K. Ibrahim-Bathis, S.A. Ahmed, V. Nischitha, and M.A. Mohammed-Aslam

6.1 Introduction 81

6.1.1 Crop Calendar 82

6.1.2 Crop Type Classification 83

6.1.3 Crop Water Requirements 86

6.1.4 CROPWAT Model 86

6.1.5 Meteorological Data 86

6.2 Reference Evapotranspiration (ETo) 86

6.2.1 Effective Rainfall 88

6.2.2 Crop Coefficient (Kc) 89

6.3 Soil Data 89

6.4 Crop Evapotranspiration (ETc) 90

6.5 Irrigation Water Requirement 90

6.6 Conclusion 91

Acknowledgment 92

References 92

7 Biophysical Characterization and Monitoring Large-Scale Water and Vegetation Anomalies by Remote Sensing in the Agricultural Growing Areas of the Brazilian Semi-Arid Region 94
Antonio Heriberto de Castro Teixeira, Janice Freitas Leivas, Edson Patto Pacheco, Edlene Aparecida Monteiro Garcon, and Celina Maki Takemura

7.1 Introduction 94

7.2 Material and Methods 96

7.3 Results and Discussion 99

7.4 Conclusions 104

Acknowledgments 105

References 105

Section III Soil and Land Resource Monitoring 111

8 SMOS L4 Downscaled Soil Moisture Product Evaluation Over a Two Year - Period in a Mediterranean Setting 113
Patrick N.L. Lamptey, George P. Petropoulos, and Prashant K. Srivastava

8.1 Introduction 113

8.2 Experimental Setup 116

8.3 Datasets Description 116

8.3.1 SMOS L4 SM Product (1 km) 116

8.3.2 In-situ Soil Moisture Data 118

8.4 Methodology 119

8.4.1 SSM Extraction from SMOS 119

8.4.2 Pre-Processing of SMOS 119

8.4.3 Agreement Evaluation 119

8.5 Results 120

8.5.1 Station ES-CPA 120

8.5.2 Station N9 122

8.5.3 Station M5 123

8.5.4 Station H7 123

8.5.5 Station K9 124

8.6 Discussion 126

8.7 Conclusions 127

Acknowledgments 128

References 128

9 Estimating Urban Population Density Using Remotely Sensed Imagery Products 132
Dimitris Triantakonstantis, Demetris Stathakis, and Zoi Papadopoulou

9.1 Introduction 132

9.2 Spatial Data Disaggregation-MAUP Problem 134

9.2.1 Spatial Interpolation 135

9.3 Materials and Methods 136

9.3.1 Study Area and Data Sources 136

9.3.2 Areal Interpolation Using Cokriging 137

9.4 Areal Interpolation Using Geographically Weighted Regression (GWR) 138

9.5 Results and Discussion 139

9.6 Conclusions 144

References 145

10 Impact of Land Cover Change on Surface Runoff 150
Apoorv Sood, S.K. Ghosh, and Priyadarshi Upadhyay

10.1 Introduction 150

10.2 Literature 151

10.3 Methodology 152

10.3.1 Supervised Classification 152

10.3.2 SWAT Model 153

10.3.3 SWAT Inputs 153

10.3.4 SWAT Outputs 154

10.4 Methodology 154

10.5 Study Area 154

10.5.1 Justification for Study Area Selection 154

10.6 Data Used 155

10.6.1 Weather Data 156

10.6.2 Satellite Data 158

10.6.2.1 LANDSAT Dataset 158

10.6.3 Digital Elevation Model 158

10.6.4 Soil Map 158

10.7 Results and Discussion 158

10.7.1 LU/LC Classification 158

10.7.2 LU/LC Map 1987 161

10.7.3 LU/LC Map 1997 161

10.7.4 LU/LC Map 2007 161

10.7.5 LU/LC Map 2017 161

10.7.6 Watershed Delineation 163

10.8 SWAT Results 164

10.8.1 HRU Analysis Report 164

10.8.2 Runoff Generated in Sub Basins 164

10.9 Conclusion 167

Acknowledgment 168

References 168

11 Delineation of Groundwater Potential Zone and Site Suitability of Rainwater Harvesting Structures Using Remote Sensing and In Situ Geophysical Measurements 170
Prachi Singh, Akash Anand, Prashant K. Srivastava, Arjun Singh, and Prem Chandra Pandey

11.1 Introduction 170

11.2 Study Area 171

11.3 Data Used and Methodology 172

11.3.1 Data Used 172

11.3.2 Methodology 173

11.3.3 Vertical Electrical Sounding 173

11.3.4 Weightage Calculation 174

11.4 Results and Discussion 175

11.4.1 Land Use and Land Cover (LULC) 175

11.4.2 Soil 175

11.4.3 Hydro-Geomorphology 176

11.4.4 Lithology 176

11.4.5 Drainage Density 178

11.4.6 Lineament Density 178

11.5 Resistivity Survey 179

11.5.1 VES Survey and Cross Section 179

11.5.2 Interpolated Subsurface Soil Profile 181

11.5.3 Groundwater Potential Zone 181

11.5.4 Suitable Sites for Rainwater Harvesting Structures 182

11.6 Conclusions 185

Acknowledgment 186

References 186

12 Structural Control on the Landscape Evolution of Son Alluvial Fan System in Ganga Foreland Basin 189
Manish Pandey, Yogesh Ray, Aman Arora, U.K. Shukla, and Shyam Ranjan

12.1 Introduction 189

12.2 Study Area 192

12.2.1 Geomorphological Setting of SAFS 192

12.2.2 Geology of the Son Valley and SAFS 196

12.2.3 Drainage 196

12.2.4 Climate 197

12.3 Materials and Methods 198

12.3.1 Data Used 198

12.3.2 Preprocessing of DEM 199

12.3.3 DEM Derived Parameters 199

12.3.4 Conceptual Background 199

12.3.4.1 Quantitative Measure of River Basin Dynamics/Reorganization 200

12.3.4.2 X (?)-Metrics and Cross-Divide ?-Anomaly 200

12.3.4.3 Rationale Behind Experimental Use of ?-Transform for Alluvial Stream Long Profiles 203

12.3.5 Normalized Channel Steepness Index (ksn) and Channel Concavity Index (?) Computation 205

12.3.6 Stream Sinuosity 205

12.3.7 Hypsometric Curve (HC) 206

12.4 Results and Discussion 206

12.4.1 Zones of (dis)equilibrium Over SAFS in Ganga Foreland Basin (GFB) 206

12.4.2 Sinuosity of Streams and Drainage Behavior Over SAFS 211

12.4.3 Extent of SAFS vis-a-vis Evolution of Ganga Plain 212

12.5 Conclusion and Recommendations 214

Acknowledgments 215

References 215

12.A Appendix A: Supplementary Figures 226

12.B Field Evidences of Neotectonic Activity (Source: Google Earth Pro) 240

12.C Longitudinal Profile of the Ganga and its Right Bank Tributaries Flowing over SAFS 242

12.D Lines of Cross-Sectional and Longitudinal Profiles 244

12.E SAFS Profiles from Pandey 2014 245

Section IV Water Resource Monitoring 247

13 Managing the Blue Carbon Ecosystem: A Remote Sensing and GIS Approach 249
Parul Maurya, Anup Kumar Das, and Rina Kumari

13.1 Introduction 249

13.2 Blue Carbon Ecosystem 249

13.2.1 Distribution 250

13.2.2 Mangrove 251

13.2.3 Seagrass 251

13.2.4 Salt Marshes 252

13.3 Factors Affecting Carbon Storage in Blue Carbon Ecosystems 253

13.4 Carbon Storage in the Blue Carbon Ecosystem 254

13.5 Pathways of Carbon in the Blue Carbon Ecosystem 254

13.6 Evaluation of Long-Term Carbon Deposition in Sediments 255

13.7 Ecosystem Services 256

13.8 Threats to Coastal Blue Carbon Ecosystems 256

13.9 Economy of Blue Carbon Ecosystems 257

13.10 Management 258

13.11 Conservation of Blue Carbon Ecosystem: A Remote Sensing Approach 258

13.11.1 Role of Optical Remote Sensing 259

13.11.2 Mapping the Mangrove Cover and Change Detection 259

13.12 Quantification of Biophysical Variables 260

13.12.1 Phenology 260

13.12.2 Role of Hyperspectral Remote Sensing 260

13.12.3 Mangrove-Mapping and Dynamics Studies Using Radar Data 261

13.12.4 Dependence on Frequency 261

13.12.5 Species Identification 261

13.13 Conclusion 262

Acknowledgment 262

References 262

14 Appraising the Changing Climate and Extent of Snow in the Kashmir Himalaya Using MODIS Data 269
Seema Rani

14.1 Introduction 269

14.2 Study Area 270

14.3 Materials and Methods 271

14.4 Results and Discussions 273

14.4.1 Trend in Air Temperature 273

14.4.2 Trend in Snow Cover Area 275

14.4.3 Variations in SCA Under Elevation Zones 278

14.5 Conclusion 282

Acknowledgments 283

References 283

15 Knowledge-Based Mapping of Debris-Covered Glaciers in the Greater Himalayan Range 287
Swagata Ghosh and Raaj Ramsankaran

15.1 Introduction 287

15.1.1 Overview of Ablation Pattern of Glaciers in the Western Himalaya 288

15.1.2 Overview of Glacier Mapping Techniques 288

15.2 Study Area 290

15.3 Data Sources 291

15.4 Methodology 292

15.4.1 Pre-Processing of Satellite Data 293

15.4.2 Knowledge-Based Approach 295

15.4.2.1 Segregation of Snow and Ice from Other Land Covers Using Spectral Index 295

15.4.2.2 Segregation Between Snow and Ice Types Using Spectral Indices 298

15.4.2.3 Segregation of Supraglacial Debris Types from Non-Glacier Area 298

15.5 Results and Discussions 299

15.5.1 Accuracy Assessment of Supraglacial Covers Mapping of Pensilungpa Glacier 303

15.5.2 Knowledge-Based Approach Versus Manual Digitization for Mapping Pensilungpa Glacier 304

15.5.3 Uncertainty Analysis 306

15.5.4 Knowledge-Based Approach Versus Supervised Classification for Mapping Pensilungpa Glacier 307

15.5.5 Evaluation of Spatiotemporal Application Potential of the Knowledge-Based Approach 311

15.6 Summary and Conclusions 312

15.7 Future Scope 315

References 315

16 Seawater Intrusion and Salinity Mapping in Coastal Aquifers: A Geospatial Approach 323
Tanushree and Rina Kumari

16.1 Introduction 323

16.1.1 Water Stress in Coastal Aquifers Due to Salinity: A Global Concern 323

16.1.2 Salinization of Aquifers in Semiarid Regions 324

16.1.3 Seawater Intrusion: Basic Concept 324

16.1.4 Various Approaches to Study Seawater Intrusion 325

16.2 Aquifer Vulnerability Concept 326

16.2.1 Vulnerability Types 327

16.2.1.1 Intrinsic Vulnerability 327

16.2.1.2 Specific Vulnerability 327

16.2.2 Aquifer Vulnerability Due to Seawater Intrusion 327

16.2.3 Methods to Assess Vulnerability 327

16.2.3.1 Sensitivity Analysis 328

16.2.4 Significance 331

16.2.5 Geophysical Approaches 332

16.2.5.1 Electromagnetic Surveys 332

16.2.5.2 Time Domain Electromagnetic (TDEM) 333

16.2.5.3 Frequency Domain Electromagnetic (FEM) 333

16.2.5.4 Self-Potential 333

16.2.5.5 Ground Penetrating Radar 333

16.2.6 Numerical Model for Explaining Seawater Intrusion 334

16.2.7 Remote Sensing for Salinity Mapping 334

16.2.7.1 Optical Remote Sensing for Salinity Mapping 334

16.2.7.2 Hyperspectral Remote Sensing 335

16.2.7.3 Microwave Remote Sensing for Salinity Mapping 335

16.3 Conclusion 336

Acknowledgments 337

References 337

17 Wetland-Inundated Area Modeling and Monitoring Using Supervised and Machine Learning Classifiers 346
Swapan Talukdar, Sakshi Mankotia, Md Shamimuzzaman, Shahfahad, and Susanta Mahato

17.1 Introduction 346

17.2 Study Area 348

17.3 Data Sources and Methods 349

17.3.1 Data Sources 349

17.3.2 Methods for Wetland-Inundated Area Mapping 349

17.3.2.1 Methods for Machine Learning Classifiers 350

17.3.2.2 Method for Supervised Classifiers 352

17.3.3 Methods for Accuracy Assessment of Wetland-Inundation Area Mapping 352

17.3.4 Methods of Modeling Wetland Landscape Transformation 353

17.4 Results and Discussion 353

17.4.1 Wetland Mapping Using Different Classifiers 353

17.4.2 Validation of the Methods 354

17.4.3 Spatiotemporal Analysis of Hydrological Variability of the Wetlands 356

17.4.4 Fragmentation Analysis of the Hydrological Variability 357

17.5 Conclusion 360

Acknowledgment 360

References 360

18 A Focus on Reaggregation of Playa Wetland scapes in the Face of Global Ecological Disconnectivity 366
Laxmi Kant Sharma, Rajashree Naik, and Prem Chandra Pandey

18.1 Introduction 366

18.2 Global Ecological Disconnectivity 367

18.3 Playa Wetland scapes 367

18.3.1 Importance 368

18.3.2 Threats 368

18.3.3 Playas of India 370

18.4 Indian Playa Wetland scapes for Global Ecological Connectivity 371

18.5 Reaggregation of Playa Wetland scapes 374

18.6 Recent Approaches Used for Wetland scape Studies 375

18.7 Limitations of Current Wetland scape Studies 377

18.8 Scope of Integrated Playa Wetland scape Modeling 380

Acknowledgment 381

References 381

Section V Disaster Monitoring of Natural Resources 389

19 Flood Damage Assessment in a Part of the Ganga-Brahmaputra Plain Region, India 391
Rajesh Kumar

19.1 Introduction 391

19.2 Study Area 393

19.3 Materials and Methods 393

19.4 Results and Discussion 395

19.4.1 Flood-Prone and Flooded Areas 395

19.4.2 Flood Damage and Flood Protection Works 396

19.4.3 Trends in Flood Damage and Peak Flood Discharge 398

19.5 Conclusions 400

Acknowledgments 401

Declaration 401

References 401

20 Texture-Based Riverine Feature Extraction and Flood Mapping Using Satellite Images 405
Kuldeep, P.K. Garg, and R.D. Garg

20.1 Introduction 405

20.2 Related Work 406

20.3 The Study Area and Data Resources 408

20.4 Methodology 408

20.4.1 Geometric Correction and Image Enhancement 408

20.4.2 Texture Feature Extraction and Optimal Feature Selection 409

20.4.3 Texture-Based Classification 411

20.4.4 Flood Hazard Mapping for Identification of Safe Islands 411

20.4.4.1 Flood Inundation Mapping 411

20.4.4.2 Validation of Flood Extent 412

20.4.4.3 Damage Assessment 412

20.5 Results and Discussions 413

20.5.1 Feature Selection and Classification 413

20.5.2 Flood Hazard Mapping 418

20.5.3 HEC-RAS Processing and Model Validation 419

20.5.4 Flood Damage Assessment 421

20.6 Conclusion 424

Acknowledgment 426

References 426

21 Numerical Simulation and Comparison of Tsunami Inundation for Different Satellite-Derived Datasets for the Gujarat Coast of India 431
Shafique Matin and S.S. Praveen

21.1 Introduction 431

21.2 Study Area 432

21.3 Methodology 432

21.3.1 Extraction of Different Satellite-Derived Datasets 432

21.3.2 Numerical Modeling 434

21.4 Results and Discussion 436

21.4.1 Analysis of Datasets 439

21.4.2 Parallel Transects 440

21.4.3 Perpendicular Transects 440

21.5 Conclusions 442

Acknowledgments 442

References 443

Section VI Future Aspect of Natural Resource Monitoring 445

22 Future Aspects and Potential of the Remote Sensing Technology to Meet the Natural Resource Needs 447
Laxmi Kant Sharma, Rajit Gupta, and Prem Chandra Pandey

22.1 Introduction 447

22.2 Advances in Remote Sensing for Natural Resources Monitoring 449

22.3 Potential Applications in Natural Resource Monitoring 451

22.4 Challenges and Future Aspects 453

22.5 Conclusion 455

Acknowledgment 456

References 456

Index 465
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Sustainable management natural resources; monitor natural resources; remote sensing tools and techniques; remote sensing technology advances; new remote sensing advances; applications remote sensing; resource monitoring case studies; remote sensing disaster use